IR AAEC/E425
REFERENCE '

AAl

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT

LUCAS HEIGHTS

AN INTERACTIVE COMPUTING SYSTEM FOR
THE AAEC DATAWAY NETWORK

by

R.J.CAWLEY
G.D. TRIMBLE

December 1977

ISBN O 642 596352

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT

LUCAS HEIGHTS

AN INTERACTIVE COMPUTING SYSTEM

FOR THE AAEC DATAWAY NETWORK

by

R. J. CAWLEY
G. D. TRIMBLE

ABSTRACT

A package of routines is described which allows the IBM360 programmer

access to any terminal attached to the AAEC Dataway network.

National Library of Australia card number and ISEN 0 642 596352

The following descriptors have been selected from the INIS Thesaurus
to describe the subject content of this report for information retrieval
purposes. For further details please refer to IAEA-INIS-12 (INIS:

Manual for Indexing) and IAEA-INIS-13 (INIS: Thesaurus) published in
Vienna by the International Atomic Energy Agency.

COMPUTER NETWORKS; INTERACTIVE DISPLAY DEVICES; EQUIPMENT INTERFACES;
PROGRAMMING; FORTRAN

CONTENTS

1. INTRODUCTION
2. IBM 360 -DATAWAY SYSTEM

3. PROGRAMMING VIEWPOINT

Beginning Interaction

Terminal Communication

FORTRAN I/0 to the Terminal

FORTRAN Error Monitor Messages
Texrminal Input Using SCAN Subroutine
Ending Interaction

Low Level Routines

Wait Routine

W Wwwwwww
. .
W A NN

4. LINKAGE EDITOR CONSIDERATIONS

5. USE OF THE PACKAGE FROM OTHER LANGUAGES

6. TERMINAL VIEWPOINT

7. INTERACTIVE GRAPHICS

8. DYNAMIC GRAPHICS

9. EXAMPLES

10. ACKNOWLEDGEMENTS

11. REFERENCES

APPENDIX A Default Translation Tables

APPENDIX B Details of FORTRAN Interface

Page

|

OO U W N N

O

0

10

12

14

19

1°

21

23

1. INTRODUCTION

A package of routines has been developed which allows users of the AAEC
central IBM 360/65 computer to have access to any terminal attached to the
AAEC Dataway network. The package is designed for use from FORTRAN programs
pbut may be used from other high level languages OX agssembler programs.

Special intercept routines are used to re-direct FORTRAN I/0 and execution
time error messages. A special version of the RAEC free input routine SCAN
is also available which allows input from a terminal. Finally, a version of
the BAEC low level plot routine is provided to allow real-time graphics.

5. 1IBM 360 - DATAWAY SYSTEM

The IBM 360/65 is linked to a PDP9L computer which acts as a control
anit for 128 device addresses [Richardson 19691. Also attached to the PDPSL
is the multiple user Dataway [Ellis 19701 which connects to several computer
and single user terminals. The PDPOL maps IBM 360 device addresses to Dataway
addresses and so each Dataway terminal has a unigue IBM 360 I/0 address.

Any communication sequence on the Dataway consists of one computer sig-
nalling another, with a single byte specifying the operation required. This
byte is the command code (corresponding to a channel command in the IBM 360}.
The most commonly used codes are described briefly in Table 1. Quite often
the remote computer will be unable to satisfy the command immediately; for
example, if the command is X'02', the computer has to wait for the user to
type in a line of data. In this case the remote computer gives busy status
response to the command and then prompts the input from the user. When the
user has typed in the data the remote computer signals ready status with the
%'03' command and the I/0 is ra-initialised by the PDP9L.

The remote computer signalling codes are sometimes referred to as
"primary write' (X'05') and 'nop control' ({(X'03').

when terminals signal asynchronous attention, a task is initiated in the
IBM 360. The task to he started is determined by up to 24 bytes of diagnostic
data which are sent along with the attention request to the IBM 360.

For interactive jobs a terminal is considered to have attention capability
when it is set up to give X'CF02' as the diagnostic data accompanying the
asynchronous attention request. These data cause a task, called REFOZ2, to be
executed. This task uses the local SVC 202 [Richardson 1976] to notify the
user's interactive job that asynchronous attention has been signalled from
the terminal.

The other type of attention that can be signalled is synchronous atten-

tion. This is achieved when the remote computer signals unit exception status

TABLE 1

DATAWAY SIGNALLING CODES

Remote Computer Initialised Signalling

Code
05
03

(up

Data
to)24 bytes

none

Opexation

Asynchronous attention

Status presentation

Central Computer Initialised Signalling

Code
00
01
02
05
06
07
oF
41
42
45
46
7F

{up
(up
(up
{(up

(up
(up
(up
_(up

Data

none
to)132 bytes
to)80 bytes
to)132 bytes
to) 80 bytes

none
none

to) 18 bytes
to) 18 bytes
to}6 bytes

t0)6 bytes

none

Operation

test I/0, status request

write, no trailing carriage return/line feed
read, echo characters

write, append carriage return/line feed
read, no character echo

rewind - signals start

rewind unload - signals end

write, attention and tab data

read, attention and tab data

write, controlling information

read, controlling information

illegal - invalid asynchronous attention

to a write from the IBM 360.

The user requests either type of attention by

pressing the question mark character at the terminal. Terminals always have

synchronous attention capability.

3. PROGRAMMING VIEWPOINT

3.1 Beginning Interaction

The following routines are used to set up the interactive environment.

Their functions are to

(1)

(ii)

ensure the user is logged on at a remote console;
arrange for HASP to transfer terminal communication from

the INTERNAL CONSOLE [Johnstone 19741 to the user's task;

(iii) give the user's terminal asynchronous attention capability;

{(iv) inform the operator that user-job interaction has been
initiated; and

{v) idnform the user at the terminal that interactive communication
has been initialised.

These routines use the local internal console SVC 205 [James 1976] to
test for the presence of the user and gain control of the terminal unit con-
trol block (UCB)}.

The subroutine and calling sequences are as follows:

DWTEST CALL DWTEST (&N)

This entry tests whether the user is logged on at a remeote console. If not,
control is transferred to statement number N;otherwise return is made to the
statement following the CALL,

DWSTRT CALL DWSTRT

This entry arranges for the HASP INTERNAL CONSOLE [Johnstone 1974] to
transfer terminal communication to the user's task and so begin the inter-
active session.

3.2 Terminal Communication

The following routines are used to perform I/0 to the terminal.
DWRITE CALL DWRITE (BUF,L) or CALL DWRITE (BUF)

This entry writes a line of text to the terminal and requests the terminal
to append a carriage return/line feed.

BUF is the address of the array containing the text;

L is an integer variable which specifies the length of the string

to be written {in bytes or characters).

If L is omitted, the length is determined by the presence of a termin-
ating character (see below). Trailing blanks are removed and the length
adjusted before writing to the remote terminal. A maximum length of 132
characters is allowed, the length being truncated to 132 if greater.

The user's buffer is moved to ah output buffer and translated from
EBCDIC to ASCII before being written to the terminal.

DWRITN CALL DWRITN (BRUF,L} or CALL DWRITN (BUF)

This entry writes a line of text to the terminal. WNo trailing carriage
return/line feed is written. Arguments are the same as for DWRITE except
that trailing blanks are not removed.

3.2.1 Concept of a terminating character

A fundamental parameter of any string of characters is its length. How-
ever in computer hardware the length of a string is not apparent. For this

reason the use of a special (terminating) character to delimit the string is

necessary. For example, if $ is the terminating character, then the core
string,

'DATA$GARBAGE . « 2 v e vevrrans '
would be recognised as just 'DATA'. To set a terminating character for use
with the interactive routines, the routine XYTLEN is used; for example to set
to be the terminating character:

CALL XYTLEN ('#"),
DWREAD CALL DWREAD {(BUF,IL)

This entry reads a line of text from the terminal and requests the
terminal to echo input characters.

BUF is the address of an 80-character area where the input text

will be stored; _

L is an integer variable where the length of the input line

will be stored,

The ASCII characters read from the terminal are translated to EBCDIC
before returning to the user.
DWREAS CALL DWREAS (BUF,L)

This entry reads a line of text from the terminal and requests the
terminal not to echo input characters. Arguments are the same as for DWREAD.
B_W_g_lj CALL DWCAN

This entry sends the ASCII character sequence CANCEL,HOME to the terminal.
If the terminai is a display screen this results in erasing the screen and
positioning the screen pointer at the top left hand corner of the screen.
DWHOME CALL DWHOME

This entry sends the ASCII character HOME to the terminal. If the term-
inal is a display screen, the screen pointer is positioned at the top left-
hand corner of the screen.

DWTABS CALL DWTABS (Ni1,MN2,.......,N9)

This entry sends input tab information to the terminal. Up to 9 argu-~
ments may be present. N1,N2,.....,N9 are sequential tabulation positions.
If no arguments are present then the terminal is given asynchronous attention
capability.

If N1 is zero, asynchronous terminal attention capability is cancelled
and further arguments are treated as tabs.

If N1 is non-zero, the terminal is given asynchronous attention cap-
ability and all arguments are treated as tabs. The initial default settings

are 'No tabs' and the terminal has asynchronous attention capability.

DWQTST CALL DWQTST (&N)

This routine tests if asynchronous attention has been given or if a unit
exception condition (synchronous attention) was received as a response to a
previous WRITE to the terminal. Both these conditions are cleared. If either
condition is true then return is made fo statement number N, otherwise return
is to the statement following the CALL.
| 3.3 FORTRAN I/0 to the Terminal

The user may wish to use normal FORTRAN READ or WRITE statements to com-
municate with the terminal. The subroutine AEREREAD [Davids 1970] has been
modified to facilitate this and the entry DWSETU is used to set up an inter-
cept for terminal I/0. AEREREAD intercepts calls from IBCOM to FIOCS which
is the normal FORTRAN I/0 path.

DWSETU CALIL DWSETU (IN,IOUT)

This entry defines the FORTRAN unit numbers to be used for terminal I/0.

IN is the unit number to be used for input;

IOUT is the unit number to be used for output.

The input unit number must not be the same as the output unit number. A
value of zero for either IN or IOUT removes terminal I/0 capability for input
or output respectively. (May be reset by another call to DWSETU with IN or
OUT non-zero.) The unit numbers specified may be altered during the terminal
segsion if desired.

After calling DWSETU, all READs from unit IN come from the terminal and
all WRITEs to unit IOUT go to the terminal. Maximum input buffer length is
80 bytes and maximum output buffer length is 133 bytes.

If unit 1 is specified for input then the terminal does a carriage
return/line feed before the READ and the user is prompted by the terminal
bell. For other unit numbers a normal READ is performed.

If unit 3 is specified for output then the printer carriage control char-
acters blank, 0, -, +, 1 are simulated; otherwise a carriage return/line feed
is appended to each WRITE. Hence units 1 and 3 should not be mixed with
other unit numbers,

The FORTRAN END= and ERR= options for I/0 statements are not currently
supported. The initial_setting is IN=0 and IOUT=0. Calls to DWREAD and
DWRITE may be interspersed with FORTRAN terminal I/0.

3.4 FORTRAN Error Monitor Messages

FORTRAN error monitor messages may be directed to the terminal with the
subroutine DWERMS, 1Its calling sequence is
CALL DWERMS (OPTION)

If OPTION contains the character string 'ON', then error monitor messages
are directed to the terminal. If OPTION contains the character string 'OFF',
then error monitor messages revert to FORTRAN unit 3. A CALL to DWSETU spec-
ifying unit 3 for terminal output does nct override this. This is because
error messages are not written by the normal IBCOM-FIOCS path, but by a
direct call from the error monitor to an entry FIOCSBEP in FIOCS.

3.5 Termipal Input Using SCAN Subroutine

A special version of the low level subroutine RDSCAN (DWRDSCAN) allows
the subroutine SCAN [Bennett & Pollard 1967] to be used for terminal input.

The user should specify an input unit number of -1 or -2 in his SCAN
call if he wishes to read from the terminal.

UNIT = -1 reads from the terminal and input characters are echoed;

UNIT = -2 reads from the terminal and input characters are not echoed.

Note that the maximum input buffer size is 80 characters.

If the terminal responds with three consecutive carriage returns to a read
by SCAN, then RDSCAN writes 'END OF FILE' and terminates the job unless the
end of file exit option has been set by a call to OPSCAN., The standard
version of SCAN operates from the terminal by use of a positive unit number
and corresponding DWSETU call. However, no facility for end of file is
provided.

3.6 Ending Interaction

The interactive terminal session is concluded by the routine DWEND. Its
calling sequence is
CALL DWEND
The user should not call any of the 'DW' routines except DWSTRT or DWTEST
after calling DWEND. Any attempt to do so results in a no-operation. This
routine uses SVC 205 to relinguish control of the terminal and return it to
the internal console.

3.7 Low Level Routines

The low level routines described here perform the following functions:
(i} setting up the DDLESS I/0 environment at start-up.
(ii) All I/0 using the EXCP macro.
(iii} oOptional translation of I/0 buffers from ASCII to EBCDIC and
EBCDIC to ASCII respectively.
(iv) Removing thé DDLESS I/0 environment at termination.
These routines are in general for the internal use of the package; how-

ever, users with special requirements may sometimes need to call them directly.

DWTRAN#

This module contains three entry points- DWOPEN, DWIRAN and DWCLSE ~ a separate
CSECT which contains the two translate tables, and a three word COMMON block.
DWOPEN '

Called by DWSTRT to set up a DEB, IOB and DCB for terminal I/0. This
routine uses the local SVC 248 [Richardson 1974] to establish these control
blocks.

DWCLSE
Called by DWEND to close and remove the DCB, IOB and DEB. (Uses
SVC 248).
DWTRAN
This is the entry which performs all terminal I/0. 1Its calling
sequence is
CALL DWTRAN (BUF, L, $CMD, ISW,&NL, &N2,&N3)
where
BUF is the address of the I/0 buffer;
L is an integer variable which specifies the length of BUF in
bytes;
$CMD is a l-byte variable which specifies the channel command to
be used;
ISW is an integer variable which specifies if translation is to occur:
ISW = 0 no translation,
ISW = 1 translate BUF from EBCDIC to ASCII before performing I/0,
ISW = 2 translate BUF from ASCII to EBCDIC after performing I/0;
Nl is the statement number to which control is transferred if the
channel status at conclusion of I/0 is 'UNIT EXCEPTION';
(No data will have been transferred in this case.)
N2 is the statement number to which control is transferred if the
I/0 failed;

N3 is the statement to which control is transferred if no open DCB

is present for terminal communications.

After return, general register O contains the number of bytes transferred.

COMMON DWCOM$

This common block has three entries, each of one word:
COMMON/DWCOM$ / IDWEL , DWCS , IDWOM
where
IDWEL is an integer variable which contains the number of bytes
transferred by the last CALL to DWTRAN;

DWCS contains in the low order 8 bits the status bits from the
channel status word at the conclusion of the last terminal I/0;
IDWOM is an integer variable which is 0 if unit exception has not
been signalled, and 1 if unit exception status has resulted
from a previous I/0. A CALL to DWQTST resets this flag to zero.
The user should not attempt to extend the length of this COMMON block.
COMMON DWTRN$

This COMMON block contains the 2 translate tables used by DWTRAN:
COMMON/DWTRNS$/E2A , A2E

Each table is 256 bytes long. E2A is the EBCDIC to ASCII translate
table (see Appendix A), A2E is the reverse (see Appendix A).

The user should not attempt to extend the length of this COMMON block.
DWCASE

This entry alters the ASCII to EBCDIC translate table in COMMON/DWTRN$/ .
Its calling sequence is

CALL DWCASE (OPTION)

where

OPTION is a l-byte character:

'L' sets table to translate lower case ASCII alphabetic characters

to lower case EBCDIC characters;
'U' sets table to translate lower case ASCII alphabetic characters
to upper case EBCDIC characters.

The default ASCIT to EBCDIC translate table corresponds to the option 'U'.
DWMSG

This routine is called by the DWCOM$ module to print error messages on
FORTRAN unit 3. Its calling sequence is

CALL DWMSG (BUF,1.)

BUF is the address of the message;

L is its length,
DWEXIT

This routine is called by the DWCOM$ module when a permanent I/0 erxror
cccurs. DWEXIT does a FORTRAN STOP.

3.8 Wait Routine

This routine sends the user's IBM 360 task into a wait state. The
call is
CALL SWAIT (N)

where the wait state persists for N/100 seconds.

4. LINKAGE EDITQR CONSIDERATIONS

The routines described are all available from the load module library
'PHYS.FORTLIB'. However the following precautions should be cobserved if the
routines DWSETU, DWERMS or the special RDSCAN are required.

These routines replace standard versions of the following routines and
as such must be specifically included in the user's load module.

DWSETU replaces AEREREAD
DWERMS replaces FIOCSBEP and FIOCs#
DWRDSCAN replaces RDSCAN

The user of these routines is thus advised to include the following in
his linkage editor input,

INCLUDE SYSLIB(DWSETU,DWERMS, DWRDSCAN)

The entire package is available with an

INCLUDE SYSLIB (DWCOMM)
5. USE OF THE PACKAGE FROM OTHER LANGUAGES

The basic package is written in assembler language and uses standard
linkage conventions. If the user provides his own versions of the low level
routines DWMSG and DWEXIT all routines except DWSETU, DWERMS and DWRDSCAN are
available for use.

If the user's DWEXIT routine is entered he should not return to the pack-
age as it does not expect a return from DWEXIT. An OCl abend occurs if a
return is made. The package calls DWEND before calling DWEXIT.

The error returns described for FORTRAN calling sequences correspond to

the following return codes in register 15:

&RET1 is R15 =
&RET2 is R15 = 8
&RET3 is R15 = 12

Normal return corresponds to R15 = 0 .

6. TERMINAL VIEWPQINT

The steps in running an interactive job are

1. the user submits his job as a CLASS=I job, (HASP will automatically
hold the job;

2. he starts a HASP INTERNAL CONSOLE at his terminal and logs on using
his ID;

3. he issues a '$RUN' command to the conscle and nominates his job
(either by name or number) in reply to the 'JOB:' question. If an
I class initiator is free, the user's job is released to start; if

not, he signs off (see step 9) and returns to step 2 later;

10

4. he types carriage return when prompted by '='
5. the conscle types
'START BY JOB xxx'
when his job is ready to interact;

6. the user issues a '$RUN' command to the console and types an
immediate carriage return to the "JOB:' question;

7. his job should now begin communicating with the terminal;

8. when the user's job finishes the interactive session, the HASP
CONSOLE prompts the terminal with the message 'END OF INTERACTION'
and then ‘'=';

2. the user should terminate the console by replying 'E' .

7. INTERACTIVE GRAPHICS

Several terminals on the AAEC network have graphic display capabilities.
These are a TEKTRONIX T4002 display attached to a NOVA computer plus three
GT40-type computers which have software to simulate a TEKTRONIX. All batch
graphics on the central IBM 360 computer use a package of low level routines
[Cox et al. 1969] which at thelr base have two routines (GPSEND and GPLOT) for
graph initialisation and pen (or beam) movement. To allow interactive jobs
to send plots directly to a graphics terminal, new versions of GPLOT and
GPSEND have been written which, instead of generating data for later plotting,
send the display information directly to the terminal in TEKTRONTX format.

Only two of the TEKTRONIX modes are used. These are character mode, set
by a US character (9F hex) and vector mode, set by a GS character (9D hex).
Several other characters also reset the TEKTRONIX to character mode but these
will not cause problems as long as the procedures described below are observed.

The interactive graphics routines are written so that the plet initial-
isation call:

CALL GPSEND (1)
automatically sets to vector mode and the plot termination call:
CALL GPSEND (2)
resets to character mode and 'homes' the display. Hence mode problems only
occur when interspersed text and graphics are required. To allow for this,
the entries GPSUSP and GPREST are provided. A
CALL GPSUSP
suspends vector mode, sets to character mode and homes the display while a
CALL GPREST

homes the display and resets to vector mode.

11

NOTES:
(i) GPSEND(1) makes the display origin (bottom left hand corner)
the GPLOT origin.

(ii) One GPLOT unit (normally 1 inch) becomes 68.75 display units.

Hence the screen represents an area approximately 14.89 by

11.17 inches.

{(iii) The display information is buffered in the IBM 360.
To produce plots in real time a
CALL GTEND
transmits the current buffer contents to the terminal {even if only partly
full). A call to GPSUSP also empties the buffer.
Cursorxr
Several routines are provided for the use of the cursor on the

TEKTRONIX and its light pen equivalent on the GT40 displays. These are

{i) CALL DWCURS (ICX,ICY)
which returns in ICX and ICY the location of the cursor in screen units
0<ICX<1023 ; 0SICY<767).

(ii) CALL GPCURS (X,Y)
which returns in X and ¥ the cursor location in GPLOT units.

(iid) CALL DWREAC (LOGC)
which returns in LOGC {a LOGICALxl variable) the ASCII character that was
pressed when the cursor position was returned from the terminal. This call
must immediately follow the call to GPCURS or DWCURS.

Note that the cursor operates in character mode, so a call to GPSUSP
would be necessary if the cursor is to be used while in vecteor mode. A call
to GPREST would then be necessary to reset to vector mode.

XYPLOT

The XYPLOT package [Trimble 1977] functions normally with the interactive
routines. Plot initialisation (XYPAPE etc.) automatically sets vector mode
and plot termination (XYEND) resets to character mode. Additionally routines
XYSUSP and XYREST should be used in place of GPSUSP and GPREST. An additional
routine ‘

CALYL XYCURS (X,Y,&0UT)
returns in X and Y the cursor location in user units windowed onto the graph.
The error exit is taken if the cursor is cutside the graph.
PLOTSW
For some applications it is desirable to be able to switch the graphics

backwards and forwards between the terminal and the normal batch plotting

12

system. To allow this a special module DWPLOS (see availability below) is
provided which is activated by a

CALL PLOTSW ('DIRN')
where 'DIRN' is a 4-character string which may either be 'DISP' or 'CALC'.
If the argument is 'DISP', graphics information is sent directly to the term-—
inal. The argument 'CALC' (which is the initial setting) puts graphics in-
formation into the normal batch graphiecs output queue. Note however that
switching must not be made while plotting is active.

Availability

The normal interactive graphics package is available from the load
module library PHYS.FORTLIB and should be linked into the user's program
with a card containing
INCLUDE SYSLIB (DWPLOT)
as input to the linkage editor. If PLOTSW is required, this should be replaced
by a card containing
INCLUDE SYSLIB{(DWPLOS)
8. DYNAMIC GRAPHICS

The GT40-type computers have refresh display unifs and are therefore
capable of dynamic displays. Any picture displayed on these machines is rep-
resented in the computer memory as one or more display files. The display
files are programs for the display processor which runs independently of the
computer's central processaor.

As an initial dynamic display system, a fairly simple package has been
implemented which allows up to three separate display files to be handled.
File 1, the basic display file, is used for the norxmal TEKTRONIX simulation.
The other two files are similar in operation but may be turned on and off
under program control from the central computer. Generally these two files
are alternate frames of a dynamic display, one displaying while the other is
being built,

In the GT40 computers approximately 8K words are available for display
files. At the initiation of an interactive job, all this area is given to
file 1, and the other files have no space available. The user has control
over the display files by use of the subroutine DWCTLW with calling sequences,
(a) to (k).

(a) CALL DWCTLW (0O)

which 'erases' all three display files. Following data load into

file 1.

(b)

(c)

(@)

{e)

(£)

(g)

(h)

(1)

(3)

(k)

13

CALL DWCTLW (1,N2,N3)
allocates space for files 2 and 3. N2 and N3 are the number of
bytes {(must be even) to ke given to files 2 and 3. N2 + N3 must
be less than 16000 (there are 2 bytes/word in the GT40). This
call must only be made directly after a CALL DWCTLW (0).

CALL DWCTIW (2,:NF) NF =1,2,3
where +NF erases file NF. Following data load into file NF; -NF
homes file NF. éollowing data add to file NF.

CALL DWCTLW (3,NF) NF = 2,3
turns off file NF.

CALL DWCTLW (4,NF) NF = 2,3
turns on file NF.
CALL DWCTLW (5,NF) NF = 2,3

turns on file NF and turns off file 5-NF ({(the other of 2 & 3).

This is useful for switching frames of a dynamic display.
CALL DWCTIW (6[,IX,IY])

turns on the cursor and optionally defines its position (0<IX<1023;

0<IY<767). The cursor is left in a tracking mode - see DWCTLR below.
CALL DWCTLW (7)

turns off the cursor.
CALL DWCTLW (8,IL) iL = 0,1,2,3

selects GT40 hardware line type.
0
1
2 - short dash

solid line

long dash

3 - dot dash

CALL DWCTLW (92)
removes the ‘sync' from display file 1. The GT40 local software
attempts to maintain constant screen intensity by keeping track of
how much display file has been generated. The sync (which prevents
an excessively bright picture when little information is being dis-
played) is normally removed by the local software. However when
multiple files are being used it is not always possible to calculate
total display volume, and flicker may occur. This call overcomes
the problem.

CALL DWCTLW (10)
rings the bell in the GT40 keyboard. A further routine DWCTLR is
available with a

14

CALL DWCTLR (IS[,IX,IY¥])
returning in IS the current content of the GT40 switch register
(-32768<15<32767) and optionally the current cursor location.
Warnings

(i} Unpredictable results can occur if input is requested from the

terminal when file 1 is not the current display file.

(ii) Always GPSUSP/XYSUSP before switching display files because

the file switching forces character mode. Then GPREST/XYREST

before resuming plotting.
9. EXAMPLES
Example 1

This program accepts data of the form:
FUN X

where FUN is the function regquired (SIN,COS,TAN,EXP or LOG) and X is the re-
quired argument.

The program types back the value of FUN(X). If FUN is given as END then
the program terminates. The source of the program is shown in Table 2 and term-
inal output in Table 3.

Example 2
This example demonstrates dynamic graphics. A previously created file

contains records of the form:

record 1 50 x values

record 2 80 vy values (first set)

record 3 50 y values (second set)
etc.

A '"movie' of y:x will be Qenerated. The program is shown in Table 4,
Note that the XYPAPE 'box' is placed into file 1 and is displayed permanently.
Example 3

This program demonstrates the use of the cursor in tracking mode. The
cursor is displayed and its trail is drawn if any of the low order console
switches are up. Console switch 14 erases the current picture and restarts.

Console switch 15 terminates the job. The program is shown in Table 5.

10

20
160
200
300
4G0
500
800
201

900

15

TABLE 2

PROGRAM FOR EXAMPLE 1

INTEGER ITUN (D) /TSIN',YCUSY,PTANY ,TEXP L 1LO5 Y/

INTEGER IEND/YENDY/

CALL XYTLEN({*#")

CALL DWSTRT

CALL DWSETU{0,4)

I1C=73

CALL SCAN{4,-1,IC,IKEY,})
IF{IKEY.EQ.IENDY Gi) TO 200
pa 10 1=1,5
IF(IKEY,,EQ.IFUN{L)Y) GU TO 20
CONTINUE

GO TO 1

CALL SCAN(2,—-1,1C4%,1)

GO T (100,200,300,400,500} ,1
Y=5EN(X)

GO TO a090

Y=C0S5 (X)

GO TO 400

Y=TAN {X}

GO0 T3 300

Y=EXP (X)

U TO 8060

Y =ALOG (X)

WRITE {(4,301) LIFUN(I) ,X,Y

FORMAT (A3, ' [V, 1PE13.5,"Y=",F13.5)

G TO 1

CALL DWRITE{'END 0OF HUN#?)
CALL DWEND

STuP

EnD

get terminating character
start interaction

set unit 4 for output
acan pointer

get keyword

test for end

test

for

keyword match

if not

read x

take appropriate service
sin{x}

cos {x)
tan (x)
exp {x)

In{x)
type result

continue
type end message
end interaction

1ls

TABLE 3

TERMINAL QUTPUT FROM EXAMPLE 1

$R8CONSOLE

iD:

=7

JOB 147 USRINT AWAITING EXEC I PRIG 13 HOLD 2
=$HUN

JOBsUSRINT

Jii RELEASED T START CLASS I

START BY 147

JO8:

JUB 147 USRINT HOW READY (269)

SIN 1.4
SIN(1.40000c¢000= 9.85450F-01
COS 1.4
COS{ 1.,400000+00)= 1.69967E-01
LUG 4.8

LOG{ 4.80000E4+400) = 1.56862E4+00
EXP 1.:56862

EXP{ 1.06862FE+00)= 4.30002E+00
TAN 0.7

.TAN{ 7.00000E-01)y= B8.422838E-01
END

LCND UOF RUN

END UF INTERACTION
=E
END: CONSULE

17

TABLE 4

PROGRAM FOR EXAMPLE 2

DIMENSION X{50),Y (50)

CALL XYTLEN({?#"Y gets terminating char
CALL DWSTRT start interaction

CALL DWCTLW (O) reset diasplay files

CALL DWCTLW(1,1000,1000) allocate space for 2 & 3
IC=73

CALL DWRITN{IUNIT NUMBER:#'")

CALL SCAN(1L,-1,1C,IU,1)

CALL DWRITNI{'Y DIANGE (MINEMAX):H?')
CALL SCAN{24-1,IC,YMN, 1)

CALL SCAN({2y-1,IC,YMX,1)

READ{IU) X read x values
CALL DWCAN erase screen

CALL XYPAPE([-10,-8,X (1) ,X{50) yYMN,YMX) initialise plot
CALL XYsUSP suspend plotting
KF=2 get file number
CALL DWCTLW (2,KF) set the file
HEAD{IU,END=2Y Y read y

CALL XYREST resume plot

CALL XYLLINE{X;Y,.50) draw y/x

CALL XYsUSP suspend plot

CALL DWCTLW {5,KF) display new frame
AF=5~KF swap fite numbers
GO Td 1 continue

CALL SWAIT{500) 5 second delay
CALL DWCTLW{(0) reset

CALL DWCTLW{1,0,0) deallocate space
CALL DWEND terminate

3T0OP

END

—

PROGRAM FOR EXAMPLE 3

DATA IXL,1YL/512,384/,5CALE/63.75H/

CALL DWSTRT

CALL GPSEND(L)

CALL DWCTLW({H,IXL,IYL)
IP=3

CALL SWAIT{1IO)

CALL DHUCTLR{KS,1X,IY}
IF(KS.LT.0) GO TO 4

IF{K5.06T.16384) GO TO 3
IF{(IX.EQ.IXL.AND.IY.EQ.IYL)

IF{K5.EQ.0} GO Tu 1
H=1X/53CALE
V=1Y/SCALE

IXL=1IX

I¥YL=IY

CALL GPLUT(HLV,1IP)
IP=4

CALL GTEND

GO TO 2

CALL GPSU3P

CALL DBWCAN

CALL GPREST

GO TO 1

CALL DWCTLUW (7)
CALL GP3END(2)
CALL DWEND

STUP

END

start up

initialise GPLUOT
turn on cursor

beam off initially
10/100 second wait
get switch & cursor
swlbH implies finish
swi4 implies restart

G0 TO 2 ignore if no move

no trail if no switches
get H

and V

s3ave new pos

draw line
set beam on
empty buffer
continue
suspend
erase screen
resume
restart
cursor off
end plot
terminate

19

10. ACKNOWLEDGEMENTS

The authors thank Dr. D. J. Richardson, Mr. G. R. James and Mr. R. P.

Backstrom for their assistance in interfacing this interactive system with

AAEC - HASP - 0OS - MVT operating system in the IBM 360 computer.
1ll. REFERENCES

Bennett, N.W. & Pollard, J.P. [1967] - RAEC/TM3990.

Cox, G.W., Carey, J.H. & Van Klink, K.H. [1969] - AAEC unpublished report.

pavids, R.E. [1970] - AAEC/TM567.

Ellis, P.J. {1970] - RAEC/E206.

James, G.R. [1976] - AAEC unpublished report.

Johnstone, I.L. [1974] - AAEC unpublished report.

Richardson, D.J. [1969] - Aust. Computer J. Vol. 1, No. 5, November.
Richardson, D.J. [1974] - AAEC unpublished report.

Richardson, D.J. [1976] - AAEC unpublished report

Trimble, G.D. [1977] - AAEC/E437.

the

20

NOTES

> moa o X B R

-

> I RN "R e |

g b OO D

Mo OS2 OO BN O

MU L OGS QNS

S Aium a MG i e e ek BANL UL e et ke s — ok

e Bhlin debe Beem dimiet M e DR Mt G S i Kem i e

21

APPENDIX A

DEFAULT TRANSLATION TABLES

EBCDIC TO ASCIT TRANSLATE TABLE

SECOND HEX DIGIT
0 + 2 3 4 5 6 7 8 9 A B C D E F

ASCIY TO EBCDIC TRANSLATE TABLE

SECOND HEX DIGIT
0 1 2 3 4 5 6 7?7 8 9 A B C D E F

e e AR i ke NS Y e S A i TS T T T o e e i ol S AL S T A Y LS T W R Mt T - "

22

NOTES

23

APPENDIX B

DETAILS OF FORTRAN INTERFACE

FORTRAN terminal I/0 is achieved by intercepting calls by IBCOM# to
FIOCS# using the AEREREAD subroutine [Davids 1970). The DWSETU is
an entry which has been added to AEREREAD which activates the
intercept for the input and output units and redirects I/0 through

DWTRAN rather than FIOCS.

FORTRAN error monitor messages are redirected to the terminal by a

special intercept routine (listed below).

These intercepts depend upon the 05360 release because they assume
that the special internal linkage between the various FORTRAN run-time

libraries is constant.

{continued)

//AS
FINCSBEP

TOFIOCS

SAVE
%

%

#
CHECK

DBL

DBL 2
SEND

TDO

INIT

TRAN

EXEC
CSECT
USING
BC
STM
LR

LA

5T

ST

B

L

BR
DROP
USING
D3

APPENDIX B

(continued)

ASMFCL ,PARM LKED='LIST,MAP ,NCAL,LET?

FINICSBEP,R1
15, TOFIOCS
R14,R12,12 (R13)
R14 ,R13
R13,SAVE

R13,8 (,R14)
R14 44 [,R13)
CHECK

R1,=V (FIOCS$$)
R1

R1

SAVE,R13

184

INITIALLY BRANCH 1D FIOCS
SAVE REGISTERS

EXCHANGE

SAVE

AREAS

FIOCS ERROR ENTRY
BRANCH T FIOCS

R0=> PARAMS (RETURN ADDRESS IS RO+6)

DS
LR
CLI
BE
CLI
BNE
LA
LA
CL1
BNE
BCTR
BCT
B

5T
LA

L
BALR
c

BE
LA
bs

L
BALR
C
BE
LA
LA
MVI
MVC

LM
LM
LR
LA

PROP

oY

R1,R0O
Q{R1),X*00?
INIT

ORL), X202
INIT

R1,132
R2,BUF+132
Q{R2)y,C" !
DBLZ2

R2,0

R1,DBL

INIT

R1,LEN

R1, DWCON
R15,=V (DWTRAN)
R14,R15

R15,=A (4)

SEND

R1, DWARG

0y

R15,=V (DWTRAN)
Ri4,R15
R15,=A {4)

TRAN

R2,BUF

R3,133

BUF,C* ?
BUF+1(132) 4 BUF
R13 44 (4R13)
R14,R0412 {R13)
R4,R12,36 {R13)
R1, R0

6{,R1)

Rl, DVARGNO
TDO

R13

GET ARGUMENT ADDRESS .
CHECK IF INITIALISING CALL
BRANCH IF SD

CHECK IF A WRITE

BRANCH IF NOT

MAXIMUM LENGTH

END OF BUFFER

TEST FOR BLANK

BRANCH IF NOT

REDUCE POINTER

REDUCE COUNT AND CONTINUE
BRANCH IF ALL BLANK

SAVE THE MESSAGE LENGTH
CARRIAGE CONTROL LIST
SEND CARRIAGE CONTROL

TEST FOR UNIT EXCEPTINN
RETRY IF S50
MESBSAGE LIST

SEND MESSAGE

TEST FOR UNIT EXCEPTION
BRANCH IF SO

RESET BUFFER PUINTERS
FOR ERROR MONITOR

BLANK 0OUT

BUFFER AREA

RESTORE R13

LOAD REGISTERS

RESET R1
RETURN

NO TRANSLATE LIST
RESEND

{continued)

DWERMS

STOF

*

DWCON
DWARG
DWARGNO
LEN

{ONE

ZIL
DWCR
BUF

DWW

ENTRY
USING
L
U3ING
L

CLC
BNE
MV i
CLC
BCR
MVI
BR

DC
DC
pc
e
BC
e
nc
bpC
DC
LTORG
REGS
END

25

APPENDIX B

DWERMS
DWERMS,4R15
R15,=A{FIDNC3BEP)
FIOCSBEP,,R15
R1,0 (,R1)
G(2yR1),=CL2'0N"?
STOF
FIOCSBEP+1,X 00
0{34K1),=CLS'OFT!
'qul’-’l’
FIOCSBEP+1,X"FQO !
R14

{continued)

ARGUMENT ADDRESS
TEST IF 'ON?
BRANCH IF NOT
SET NDO BRANCH
TEST IF '0OFF?
RETURN IF NOT
SET BRANCH
RETURN

DA{0) 4A [DWCHR,DWCR,DWW) 4 X80 ' ,AL3 {ZIL)
0A (0) yA{BUF+1,LEN,DWW) ,X'80 ' ,AL3 {ONL)
OA{0) A (BUF+1,LEN,DWW) ,X 130" ,AL3 (Z1IL)

A(132)
A(l)

A (0)

A (0)
CL133
XL1'05"

DUMMY BUF FOR CRLF

WRITE 5 (TRAILING CRLF)

J/LKED.BYSLMOD BD DSN=PHYS.FORTLIB,DISP=3Hi
//LKED.SYSIN DD =%

CHANGE FIOCSBEP {(FIOCSSHES)
INCLUDE B3YSLIB({IHCEFI{S)

NAME DWERMS (R)

/%

J/LKED,SYSL.IB DD DSN=SYS51.FORTLIB,DISP=5SHR

/7

26

NOTES

