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ABSTRACT

This second paper of a series discusses the formulation of the quantum mechanical
equivalent of the relative time classical theory put forward in Part I. The relativistic wave
function is derived and a covariant addition theorem put forward which allows a covariant
scattering theory to be established. The free particle eigenfunctions are not plane waves
and a covariant partial wave analysis is given.

A means is given by which wave functions which yield probability densities in 4-space
can be converted to ones yielding the equivalent 3-space density. Bound states are considered
and covariant analogues are given of the harmonic oscillator potential, Coulomb potential, the
square well potential, and two-body fermion interactions.
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1. INTRODUCTION

In Part I the relativistic two-body problem was discussed and a system of calibrating
proper times put forward which permits the simple evaluation of many standard problems in a
fully covariant way. This paper deals with the Schrodinger quantization of the proper time
theory and examines the properties of various relativistic models whose classical covariant
solutions were obtained in Part I.

In the first section the relativistic two-body wave equation and the properties of
angular momentum operators are derived. Then a covariant addition theorem is derived which
permits the configuration space and momentum space eigenfunctions to be coupled to give a
covariant wave function. This theorem is applied to the construction of the two-body free
particle wave function which is found not to be a plane wave. This relativistic wave formalism
is used to define the covariant cross section and scattering matrix and an expansion into
covariant partial waves is derived,

Usually relativistic wave functions cannot be interpreted as defining probability dens-
ities in ordinary space. It is shown that this is because we are working in a four-space of
hypesbolic symmetry where features of wave propagation are unfamiliar. If we convert the wave
function to those eigenfunctions appropriate to spherical symmetry in three-space with an add-
itional time co-ordinate, familiar and meaningful wave functions are obtained. A general symm-
etry conversion procedure is given and is shown to yield plane waves in three-space for the
case of free particles. The conversion is applied to general scattering from potentials and
formulae for the scattering matrix are derived.

The problem of bound states is next considered. Four standard models, the harmonic
oscillator, motion under the influence of the inverse cube law of force, the covariant Coulomb
field and the square well potential, are treated. Only the boson-boson model of these inter-
actions is solved. However, a model for the boson-fermion and fermion-fermion systems is put
forward.

2. SCHRODINGER QUANTIZATION

The notation of Part I will be used throughout this work. Let us examine the form of

the proper time calibration theory when Schrodinger quantization is applied. The quantized
relative four-momentum of the two-body system is (Schiff 1949),

Qu - ih 'BBR ) @
f23

When this is substituted into the component of the Hamiltonian which describes the relative
motion,

2u (H-Uy-Q* =0 , (2)

such that the equation becomes an operator equation acting on a covariant wave function Y(R),
we find the covariant two-body wave equation

!
(3 a-0 vo) v® -0 @)

where

2 o s}
] = = Tl
L G BR“ R,

G,.,, = the metric tensor

= the reduced mass

0O = the covariant interaction.



—2

Using the co-ordinates (30)* of Part I and assuming hypercentral forces such that O is a
function only of the hyper-radius S, we can separate (3) into the component eigenfunction equations,

M [ ess Loors - A w -0
i) (1-y») -q(;?y%’-- ¥ [Lz - —Al—;t;;z:l ¥y =0,y - tanhy

Gi) (—xy T¥e oy d¥e +[1f_. ﬂ--] W; = 0, Xx=cosf

dx? dx 1-x*
. Yy )
(IV) “‘&‘ab*;é + m ‘pgb =0
where
(v) YR = ¥ (5) ¥, () ¥(0) ¥ (9) (4)

and Heaviside units have been introduced (= ¢ = 1)
Putting
A= A+ 2, L' =@+ &)
we find the free particle eigenfunctions with U = 0 as

A, Jﬁls(QS) .B N,., QS)

(i) ¥s

A+l A+l
G v, - !_Ay Py (tanhy) + B, 2 (tanhy)‘] sech y
() ¥ - Ay % (cose)

(iv) Wy -~ Agzexp(imo) (6)

where (], N,/) are the Bessel functions of first and second kind, (?: , 9::) are the Legendre
functions of first and second kind, and the last two solutions are chosen to be the same as in
non-relativistic theory. The A’s and B’s are constants. T and c are shown explicitly wherever
their significance in equations is considered to be important.

The wave equation (3) and solutions such as (6) are valid across the surface of equal
proper time and are independent oi proper time in systems where the centre-of-mass motion can
be factorized from the total wave function. It is most important to realize that the relative time
co-ordinate implicit in the definition of S and -y applies only to ordinary times lying on the surface
of equal proper time and that the wave function defines wave propagation relative to that particular
co-ordinate. Therefore the wave function and its eigenvalues have a quite different significance
to those used by Feynman (1949) and Tomonaga (1946), in which the particle times, wave functions
and eigenvalues, apply to all possible surfaces, and not just one special surface.

* Equations (30) are the first set of equations on p. 7 of Part I. The numbering was omitted there
in error.
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involve no derivatives with respect to S and -y, and
(i) L Y@®:UEDHNY®R )

as in non-relativistic theory. The polar operator

B A

it e > + tanhy (e K 2
-1 ER a')’ ann-y e Ry + sind gqﬁ —a(b)

—

satisfies

. 2 2 ‘az a 2 2
(ii) é - 1 {[7772 + 2 tanphy -,5—,)—;:! + tanh 'yk}
so that the operator
3¢

F 2 2 2 2 2 ! B
A= k _ﬁ = I:’ sech'y +1 [‘ay“ + 2 tanhy §§J

= ]::2, sech2'>/ —(_);

has eigenvalues A(A + 2) when acting on ¥ (R). Neither L nor A contain derivatives with
respect to S. Hence ~ ~

(iif) éﬁ ¥(R) - [9(2+1)_,\(;\+2)_ T ¥ ([R)
- a'¥(R) . (8)

If the Bohr correspondence principle (Schiff 1949) is to hold we should choose A? to have positive
eigenvalues, and so { > A. ~

Now consider the mathematical situation of the theory concerning the expansion of plane
waves:

¥ - Bexp(iQ-R) = Bexp(iQSZ) 9)

into pseudo-spherically symmetric eigenfunctions. The following formulae are contained in
Erdelyi et al. (1953). The first is

exp(iQSZ) = 2°T (@) X i"(v+m) Q8" ],., @8 C. @ (10

n=0

where v is arbitrary and C: is the Gegenbauer function. Comparing (10} with the solutions
(6) it is seen that n = A, » = 1 are the appropriate choices for a plane wave solution.

Furthermore

Z = coshy coshd.z — sinh7y sinh 7 (11)
where sinhé-= ¢/Q , coshd=q/Q, 2z = qg-R/qR



e

and therefore we can use the Gegenbauer addition theorem to define solutions in terms of the
Qé‘” (tanh ). However, these solutions have eigenvalues a® from (8) which are negative and
must therefore be rejected as not satisfying the correspondence principle. What then is the
alternative to the plane wave expansion?

3. THE COVARIANT ADDITION THEOREM AND FREE PARTICLE SOLUTIONS

The volume element in the hyperspace is
dV = §°cosh®y sind dSdyd&deo . (12)

. A .
Using the 5 " solution, we have

! dt A+1 Al (A+ 8 +1) 3p
I i—e % O % O = G ER) (13)

\.’_ 1

from Erdelyi et al., and therefore these eigenfunctions form an incomplete orthonormal set with
£ > A +1, and hence a* > 0.

From the expansion properties in the three-dimensional case, we expect an expansion of
the form

x ot 4 Ta+: (QS)
QR - }E_l E:E)ul m2=—ﬂ An QIS
A+l m
X ﬁ’ﬂ (tanh-y ) sechy - ﬁ’ﬂ (cos 8) exp (im ¢) 14)

to represent the free particle eigenfunction that is Lorentz-invariant. The Qg are functions of
the components of the relative 4-momentum Q. To carry out the summations in (14) it is necessary
to establish a covariant addition theorem, and this is indicated in a semi-rigorous way.

The spherical harmonic eigenfunctions

) » [ 0+1) (2—m)!
Y, (6,0) = (1) [4W(E+m)! 1

ﬁ.’e " (cosB) exp(ime) (15)

(Edmunds 1957) simplify calculations in non-relativistic theory. To this end, we define its
covariant equivalent

{—n)! n
Y . 0 02)= [I(lgm;?ﬁ} Yy, (6,0) Fy (tanhy) sechy (16)
which satisfies
2
J-ff cHngm (‘)/,9,¢) ). ‘yniflmt {v,6,¢0) .d0 = Snd 329‘ Smmu (17)

where we have used n = A + 1. The integral is taken over the whole physical relative 4-space
and is easily proved using the orthogonality relation (Edmunds 1957)

T7 277
f sinﬁ-dej do - Yp, 0,0) Bp 1@, = Sy 5, (18)
0

0

the integral (13) and the volume element (12), which gives

d{) = cosh®y sinf dy dgd¢ . (19)
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The components of R are chosen to be (S, 1,8, ,¢:) and those of Q to be (Q, 7. , 2, ¢>) for the
purpose of the following argument. The object is to determine a Lorentz-invariant eigenfunction
g, (Z) where

Z = Q-R/QS

which is a superposition of the angular components of the wave function (6) that is:

@ 4 '
En (Z) = X ?’ugbn[{m (72:62" @2) ynﬂm()’l;@l:qbl) . (20)

=n m

However, we will postulate that because Z is invariant under the transformations v, <37,
Gy«= G,, ¢d1 <> ¢, the eigenfunctions on the right-hand side of (20) must be similarly
invariant, provided we assume g, (Z) to be a real function. Therefore we put

Me

£
gn(z) = 2 anEm ‘yiﬂm(’y?,gQ’qb?) .ynﬂm (’ylleil <;151) . (21)

a m=_Ff

f

The usual addition theorem (Edmunds 1957)

47 g o , .
P (cosw) = YIS %_g tn (O2,02) Ypn (61, ¢1) (22)
where cosw = CoS&ycos . +sind,sing, cos (P, — ¢ )

can be used to carry out the summation over m in (21), which yields

1 & n{f —n)! n
g.(Z) = e {En (22+1) a,p [“(?‘I‘ﬁ')"l"] % (tanhy:)sechy; x

X fPEn (tanhy:) sechy, - % (z) (23)

where z - cosw and a,p = a,,, as required by invariance under rotations in 3-space.

It was found in all applications of the theory in Part I that the geometrical physical region
is defined by |Z|<1. Regions where |Z|> 1 are actually accessible from the usual physical
ranges of (1, 01, ¢), (2, 02, ¢2) unless the restriction on Z is taken as a separate kinematic
condition. The sum on the right-hand side of (23) is therefore explicitly limited to the region
where |Z |< 1. Inserting a Heaviside function, &, we have

© —_m!
g,(2)#(1-Z%) = 7,1; 2 QU ay [n(égm;l?““'} X

x ) V168 Q)T - H(2) - 0= 2 ;

6(x) = 1, x>0

g@x) =0, x<0 (24)

where t. = tanh 7y, , t, - tanhy, . Multiplying both sides by %y (z) and integrating over
3-space, we obtain

‘Jﬁa(z’zg)f}",(z‘)g(z')9(1"2”)‘17"_ 1 2 [n_(EAiH]
a2y 2m -, L(Cen)!
a(Z,z,)
x a % t)VI=t2 %)= s (2+%—) [ $p(z) (") dz' (25)

~a(Z,z,)
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where a(Z,z) are the limits imposed by z, < z < z. , since |Z|<1.
Now

z = tyto 4 \]_l—tf 1 —t2 (26)

and behaves somewhat like an azimuthal angle’s cosine with respect to z-space. However the
well-known addition theorem (22) can be written

£ P —n+l) _n o _
Fo(z) = Fp(ts) By (1) + 2 n§| r +2+1)) Py (t1) Py (t2) cos(ncos™ 'Z) (27)

provided equation (26) is satisfied. Therefore, if equation (27) is substituted into the left hand
side of (25) we obtain

E’ . . “ a(z,Z 2)
= Crp ?f:l (ty) f)oe[r](t o) J dz' g (Z') cos(n’ cos’lZ') g (1-2Z?)
n=0 ~a(z,z1)
1 1 1
£ n 0 — -
= X CopFpr (1) B (t2) f dZ' 41—t 41—t cos(n' cos 1Z')gn(Z') (28)
n =0 <1

where

Ct =l —n+)/T@+n+1), ho =1, hy=2 , n# 0

Now the eigenfunctions ngn form an orthonormal set, so the expression 1(28) cannot equal the right
hand side of (25) unless we choose g,(Z)as orthogenal to cos(n' cos™ Z). It follows that g.(Z)
must be a member of this latter set with an appropriate weight function. Hence

g.(2) - Cos(cos™' 2) @9
11~ Z7

The Chebyshev polynomial

T, (2) = cos(ncos_lz)

satisfies (Gradshteyn and Ryzhik 1965)

1
.4z
.,J.;]_ Tn (Z) Tm (Z) \[T:_Z__z - h an . (30)

1

It is apparent that for the special case where t; =t, , we have

a(l,z,)=1,a(-1,z,)= -1 and therefore

2
= =27, 31
a,p o (31)
Although the series (28) diverges in the limit t, ~t,, Z — + 1, the constant a,¢ is correctly
projected from the equation, because the factor (1 — z'*), arising from the process of evaluating
the integral, cancels the infinity in the limit. Obviously, the n = 0 case must be dealt with
separately. We find the eigenfunction expansion as a result of (31)



T

cos(ncos_lg) . 272 @

E ® )
\Jl_zzi n EEO mzz_[)_ (ynfm (’)/1 ?91) (}51) (yn Em (72; 82; (PQ)

@ f=n)! ,n n ey SR e
73D T K@ F ) 18 I % @), 62

£=0

The second expansion is used for n = 0.

To find the equivalent to the plane wave expansion we consider the form of (10) normally used
in two dimensions:

exp(iQSZ) - = (i)' h, J, (QS) - cos(ncos™' Z) . (33)
n=0
The wave function that is a superposition of free particle solutions is

@ 1. QS) cos(ncos'lz__)_
QR - E A g T (34)

Comparing (33) with (34) we see that a choice of a, = ()" h, leads to

n ], (QS) ) cos(ncos"Z)
o &P s I1i-z:

|
it}

¥ (Q,R)

- exp(iQ-R)/ (QS VI=Z7)

- expiQRI/ANQSQR? , |Z|<1.

(35)

This wave function has a plane wave period, but is distorted by'an amplitude that depends upon both
Sand Q. To test if (35) is a solution to the wave equation (3), we can note that

@ o fexp(iQ-R) = —Q*fexp(iQ-R) +i(Q -Of)exp(iQ-R) + exp(iQ-R) (L’f) .
The factor (Q*$?—(Q -R)?)"* satisfies

(i) Q-0 [(SV1-z%)-1] =0
Gi) O [((sV1=z)-'1 -0 . | (36)
It is the n =0 eigenfunction of the homogeneous equation
0 fg.= 0

The centre-of-mass motion factors form the complete wave function. Combining all of these results
we find a physically meaningful two-boson wave function without interaction of

y

exp(i(r, Py + 1,°P))) i exp(i(Q:-R, + Q. R,))

¥Y(:,Pa,12,P) = QS 1-77 Q.S _z> (37)
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and _
Bl - M—1 r, + M—?ES : BQ Ty~ Iy
Pi E?
91 - E1 + PQ ; 92 = Vs~ m?)
i, m
P mime STRe ., @02, Z - 0, R./QS

4. CROSS SECTIONS

Having established an analogy between the relativistic kinematics in terms of relative
co-ordinates, and non-relativistic theory in general, we can almost write down the covariant
quantities without proof. To show that this analogy holds for the scattering of bosons, covariant
cross sections for scattering are derived. These are not the conventional cross sections associated
with two-dimensional areas in three-space, but are three-dimensional cross sections of the volume in
relative four-space. The expansion (35) is used for this purpose. The Bessel functions behave for
large QS as

L 1 !

-
@ Jn(QS)'—’-‘"LQA cos [0S — v - g

-t

-

“ - 1 T
(ii) N, (QS)= ;T%Tj] sin ‘LQS - pnm - 5 (38)

or in terms of Hankel functions

N )
O HQS - 1, @9 +iN, @92y exn@s- 5 anm T

1l

Gy H(QS) - H' (@©s) . (39)

The free particle wave behaves as

N-exp(iQ-5) | N S (i) h J. (QS)  cos(nw)
r2 n=0 n

QS sin (w)

w n _'é . kii W . " m
=N 2 @ 0 Q)7 [exp-i@- 7~ T+ exp (i( Qs %'~y | x

x  cos(nw) /sin(w) (40)

where N = normalization constant, and Z = cos @ . The first term in brackets describes an incoming
wave and the second an outgoing wave, propagating through the four-dimensional space-time. The
presence of a scattering and reacting source modifies the outgoing component. The wave function
for such a process becomes
3
nr 7

vSN3S () h, Q) TE:xp(—i(QS = B = G0 meexp (@S - 2l Ty | x

x cos(nw)/sin(w) (41)

where n, is a complex amplitude. Equation (41) holds in the asymptotic region where QS is large
and where it is assumed no interaction takes place. The scattered component of the wave is therefore
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3
tpsciu.N-Eo @) h, (QS)j(l_nn)exp(i(Qs _ _ﬂ_g_f_ %)) . cos(nw)

sin(w) (42

Suppose we confine the region of interaction to a hypersphere of radius S, , whose surface defines
a Lorentz-invariant boundary in four-space. With reference to the C.M. proper time 7, as defined

in Part I, the number of particles Fs scattered per second into the solid angle dQ, is the number

scattered through S, 2. Hence

S
Kdo = -] ¢ -85 d0 (43)
- o
it
where ] = - Q"yj(‘l’:c O Wee — Wse O ¥5o)

is the current out of the 4-sphere. Substituting the scattered component (42) into the equation (43)
for the scattering rate, we find

F, (Q)dQ - %—l‘l’scr S;dQ . (49)

Put V = Q/u , as the magnitude of the relative 4-velocity, and define the covariant cross section as
2 = F/V . (45)

Using (42),(44) and (45), we obtain a cross section

N2 cos(nw) !
2SC - @ nE:O hn (l“ﬂn) Siﬂ(CU) (46)
It is clear that equation (46) for the covariant cross section behaves as if there was a
kinematic singularity at « = 0 on the boundary of the physical region. This singularity is
cancelled by the zero in the Jacobian of the volume element. Showing this explicitly
3 <« ’ -1 2 o
Sscds N |3 h,a-7) Eﬂﬁ"‘ilz)l 127 dZdzdo
Q° Ta=o I1-7:
= P_I% s h,(1-7n,)cos(nw)| dwdzdd . ] 47
n=0

Once again we note that the system behaves as if there is an additional azimuthal angle «.
The form of the cross section (47) applies in any frame of reference. A partial wave analysis of this
type, when carried out in the laboratory system, has the same form in the C.M. system, or any other
frame of reference. The total scattering cross section is

S1sc ﬂ df - S = 4N h, [1—n, 1" (48)

Q2 n=0
A completely analogous derivation of the reaction cross section yields

IN2 w
e Eona-la,lt) . (49)

2

The first term in n = 0 contains all of the s-wave scattering components, since n < ¢ .
It contains contributions from other partial waves as well. The scattered intensity cannot exceed
the initial intensity, and so |7,]< 1 . The definition of the covariant scattering matrix is also
wholly analogous to non-relativistic theory. Outside the region of interaction, the wave function
satisfying (4) (i) is
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i VY = § C.(, — S, 0,) , with C, constants,
n =0

iy 4, = (@ Sin(@) '(QS)% = incoming component n
(iiij) O, = (i) (:“SOTrsl_E%))z (a‘;;‘% = outgoing component )
v Y '
. S 7Q8 ()
w L- ("EV 0 ; - () Hes (50
so that
¥ % Cn(gn + E)n) - % (I_Sn) On
N fexp(i Q“R) } {exp(i(QS -4 ' }
= Ng 11781_&5;_ - —“——S'/;“'_‘_ F(Q;Z)
= (free wave) — (scattered component) (51)
where
1 No(1-S,) cos(nw)
i) FQ,2) Bw Q% siney
No = normalization constant, and "
() - IFQ2)10 . (52)

F(Q,Z) is the covariant scattering amplitude.

If the wave functions ¥, 9, O are now taken to be column vectors of channel wave
functions, Q as channel momenta and n as covariant angular momenta defined in each channel,
S, becomes a matrix in channel space. From the additive properties of A, , and thefact that it
commutes with {, we can conclude that n, hence X\, is conserved throughout the reaction, just
as ¢ would be in the non-relativistic case.

5. SYMMETRY CONVERSION

The covariant wave functions for bound states lead to convergent integrals for probability
densities and reasonably simple expressions for covariant cross sections. However, the quantities

P - tel 5 J- 2’Li (v O™~ v* 0 ] (53)

derived from the wave equation (3) are densities relative to both ordinary space and the relative

times which define the surface of equal proper time. Therefore, the question arises as to how we

convert these quantities to the conventional 3-space equivalents. The wave propagation in the

relative time direction must be removed in such a way as to leave a relative energy eigenvalue in

the 3-space Schrodinger equation equivalent to (3). This can be done by defining the Fourier trans- -
forms (Sneddon 1951) at a point in 3-space.

(@) ¥ (g, &R - é—; f exp(i£T) ¥ (Q,R) -dT 0(S%)

() YQR - 5= [ ew(-ieD Y@ eR e YR - ¥ @ g0, R) (4)
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Taking the transform of (3), we get

2 fmexp(ieT)GT'dT =2u by (55)

() [-Vi=&ly + =
127 e

where
(i) Xw=&w .

Using pseudospherical co-ordinates, we find

~R 1

R .

Y= = d(R tanhy) - ¥+ exp(icR tanhy) = —— f dt - ¥ - exp(ieRt) (56)
127 —R 27 -1

and an interaction term

1

2uR

P f - ORQ ¥ RO . 7
27 -1 - = -

With a small variation in the relative time co-ordinate at a fixed point E, the interaction behaves as
, 1

2R = 1 T } J’ .

P T I t'—t) ¥ - exp(i<Rt) - dt . 58
271 p:0 p! L atp .[:[l . _1( p( ) ( )

If the interaction decreases with increasing R, and vanishes as R- », then provided

-;’-t— [enD] —> 0, |t]<<1 | (59)

R—

we will have for large R

1
2 1R . .
Nl 0O R, B ¥ - exp(ieRt) - dt
- 20 0(R,0) ¥ . (©0)

The wave equation (55) then becomes the non-relativistic Schrodinger equation (Schiff 1949),
Viy + 20 E-V)y =0 (61)
for small values of q, where

.9 e uy. E
g = ’QZ E 3 Hlj)‘ ElflJz (H+_2I)"b - (62)

Therefore, for large R, or slowly varying potentials, the wave function v becomes that applicable
at low velocities, where ¢ is small, and € is considered to be zero. This would be the case for
any weak interaction, implying that particle velocities remain small relative to the velocity of

" light. The invalidity of truncating the series (58) near the null cone where t' = 1 indicates that
measurements of relative time in this region affect the behaviour of the system violently and
enhance the higher order terms of the relativistic interaction.

In the absence of any interaction, we would expect the covariant wave function (35), which
represents two free particles, to transform directly to a plane wave at any velocity of the C.M., or
any physical relative velocity. This is in fact the case:



- R
1 S 2
L/J = '12:':: { dT - exp(ieT) e;(—p(—lgi 6(82) 6(1—2 )
" VR 0s-@Q- 5y
exp(lq R) R 2 2 2 M2 44
= e dT - Q'R -C' T )= (g *R—eD*) "
\1211 . R A AW
A S VA T (2T 57 ' (63
T e (] ) |
where N = 4 ad-b?
d - z + e? = qz
b =2q-R

a - QZRZ—(E‘_I’Q\J)Z

The integrand simplifies to give

exp(iq'R) ~ Ry t;z—-1t. \\jtifl

go= e« L lgin T — . |
W1z 1-t? f oy
1

-1

where z = q-R/qR, t, = tanhy, t; = tanh &6 . Using

z -ttty + ATty NIZtS 2
we obtain the value = for the integral, giving

g = \sz - exp(i a E) . (64)

All of formal non-relativistic scattering theory is based on the free particle plane wave
function (64). Therefore, allowing for relativistic kinematic factors, the non-relativistic expressions
for cross sections, the S-matrix, partial wave expansions, and any formalism independent of the
explicit form of the interaction, including reaction matrix theory (Wigner and Eisenbud 1947, Preston
1965, Lane and Thomas 1958), potential theory (Regge 1959) and Regge pole theory, are valid to
arbitrarily high energies. These theories become covariant within the relative time formalism,
provided no measurement is made to test Lorentz invariance. A test of Lorentz invariance is

necessarily an experiment with pseudospherical symmetry in 4-space, and the additional n-degeneracy
becomes observable.

It is very instructive to show how the wave fronts propagating in 4-space combine to give

the plane wave (64), and in doing so remove the n-degeneracy. Using the eigenfunction expansion
(35) and the addition theorem (32) we find

Y= 52-1? f dT - exp(ieT) ¥ (R) 6 ()

— 0

~1 17 J157

R [ ) 7 o® . ]n(qR\]I ti N1-t3)

= ! dt, Rt.t. - -
27 v toexplaRlats) x g 2@, qR{1-t, V1-t/ "

x PE by, Fp"(t) Vi-t: &' @) it} -9 (z) . (65)

=n
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There exists a standard Fourier transform (Erdelyi et al. 1953)

Uy O Ging) ™" Cp (cosd) T () -
¥l

. J‘ expliy cosé cosd) I, {y sinfsing) C. (cos8) (sin?)” "de (66)
0

where C is the Gegenbauer function. It is related to the spherical harmonics by (Erdelyi et al.
1953)

Clz) - 2" (p+2v) - ['(w+ 1) '(zz—l)%_’ﬁ Byiris(2) - (67)

Substituting » =n+% , cosd = t. , y=qR , p+tv=0+%, cosp -t

we obtain

-ﬂm
o 9
o~
[
\./
I
=
,ge
o~
-
bl
-
Gt
-~
£y
\
..Q
7
4
1

j dt, exp(iqRt,t.) ], (grRI1—t} {11-t.}) ‘J)ﬂn (t.)

which, when applied to (65) yields

whfn
VRN NON- b, O @ [ )1 @
n=0 P=n q \qu
1 E ]ﬂ.{.%(q ) v . n :
= o ? 2 -— h, b P (t . 68
S T o L5 ] (68)
—)!
Now bp,= (2€+1) EE n;' , and using the addition theorem the second sum equals (2¢ + 1}, so
© ¢ Jp sy @R)
Y o= 7 % 20+1) AT 9o (2
w 5O QU T N®

11
P
M|:1

o
P
=
o~
b
2
FU
\-."

in agreement with the direct result (64).

When the interaction {(S) is present, the converted wave function is

=
1

1
Rt .t o I
R j ar, SXPUIRLE) 2 6, @RIT=C J1=t7)  x
1 qR n=0

x £ 0%y K (t) T @

22D g @R K@ (69)
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4 L n
where g = X a, G- N Ga(q,R,t2) B (o)

is the 3-space radial wave function,

R
G, - r dT - exp(ie T) G.(QS) P (‘;T) (70)

~_R

and G,(QS)/QS is the solution to the 4-space radial wave equation. Bertram (1969 private communica-
tion) has proved the important result

~1

= Y—v -22—% v o .
2 ir a (1-y*) CY(y) Ny, (all—y?) exp(ixy) dy
1
EORCRIDUE A g SR MCETD R WHCCEES) )
\Ix2+ a’ :

where N, (x) is the associated Bessel function. Using this result, we find

o © »
'1, j dT - exp(ieT) = (i)" h, ]_33 (QS) cos(ncos  Z)

Y20 J_ n=0 QS 11=77
i By, (qR :
S 21 005 @lan) 2D g (72)
mToq f=0 {gR

. . @
where B, is any of the Bessel functions J,, N, H, ,H, .

The ordinary representation of the delta function (Goertzel and Tralli 1960} is not useful
in this scattering theory. Instead we use the distorted form (40} to obtain

o 1 "-1 2ﬂ : !
. S  expliQ-($-5)) R
fo Q de_ dz, ﬂ-zlj_l dzlj; d®: - gisSsinw sine  © (1-2%)

© - cos(n(w —w')) . rm %(QS) J (QS') Q-dQ

n=0 sincw - sine' ‘JO Ss’

1
F oy
ﬁNl
™
-

2

5(8-S')8(Z-Z") 5(5=8")8 (w—w")
o =47
S 1-Z? S'sin’w

kil

QS/QS = cos(w—w) , Q'S'/QS" = cos(w'~w) (73)

where the rotation theorem

j dey © cos(M(wi—w) * cos(n' (wi —e')) = —E $,.1 7 cos(n(w-aw')) (74)
0

n

has been used. In these equations
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Q-§1/Q31 = Zi "cosw, , Z =cosw, Z - cosc'
and S, is a reference 4-vector.

Following standard derivations (Goertzel and Tralli 1960) the equation for the scattering
state is

(S0 - Z’;p?f ﬁ;l .l U [ stasacazas x aess) vsQ) (75)

and G is the Green’s function

2m

I 13 dZ
G(§?§ ) = 477f Q de .I 1_21_\Jr dZ1 L d(I)l X
exp(iQ- (S-8)) , 1
Q"’SS' sinw sind | Q'—Q' )
. 15 g.(5,S") h, cosn(w — ')
4 sinw - sinw'
(0 .
1 H, QIs-8']) 76)
47 S§' sinw - sina'

where

[}

J‘ J (Q S)J (QS)QdiQ
0 Ss' [Q”—Q]

g (5,8)

1

. [H @) J. @9 |

R S<s

ss' _J !

n

[Hn ©9)1,@8) |
€ ss' 103

Taking the Fourier transform of (75) and using (64) we find the 3-space wave function

V@R = expligR) - L ﬂ'ﬂ as e"P(l‘q'R |R D osyesie. on
v R’

From (77) we find the conventional scattering amplitude as in Schiff (1949) of

t6,9) = L[] a8 expliqRY D) s',0) (78)

where q “9— 90,90 is the vector representing the initial beam momentum, and q is the final

beam momentum in the direction, (6, ). Models for scattering and perturbation expansmn can be
evaluated from equation (78).
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' 6. BOUND STATES

There are some specific points concerning the eigenvalues of the covariant angular momentum
tensor which require some elucidation. The most important is the question of its role in the energy
eigenvalues for discrete levels in bound states. Five models are given here to make this role apparent.

6.1 Coulomy Two-Boson Atom

The Hamiltonian for this problem, as in equation (3) can be written in the notation of Part I,

[(Q.- Ay Q- A LP

HY -6¥ - § = = 79
i 2M ym ] (79
We assume, as in Part I, that the electromagnetic potentials are given by
] e* 1
@ A, = &g G

where G, is an operator which is assumed to obey the eigenvalue equation
(ii) G}_"p: QCM qul 3 [G_1,}(,] = QIH—HQI = 0
where the square brackets denote the commutation relationship, and G, is a scalar. Ugy, is the

4-velocity of the C.M. Similarly

e? 1
(iii) A, = 6' g G, ; G, ¥= Uy Y . (80)

When these potentials are substituted into (79) we find 7
Qi 1 AT Q;

o= o o (v Qo r QurAad = e )

. Al
- o - {A N 2 Q'Afz}’+ 22
2p 7 Q:* Q. A 2u

= _gi + Qf, -|.f_1 e_.__].'_ +f2 © 1

S 81
2M 2u c S c: & ®1)

to order e® at least. Dropping the suffix C.M. from the four-velocity, the following commutation
relations must be valid for the above equality to hold

[Q:, U1 -0 , [Q,Ul -0 , [QuiGd -0, (0,361 -0

o =
|

| L

T~

w2

[Qs, Gol= 7§ es Go 5 [Goygl =0, es -

and therefore [Q., A:]=0 , [Q. A,) = 0

These conditions are really only necessary to simplify equation (79). We define two operators
(F, ,E ) with constant eigenvalues (f,, f,)

F.v=f 9 ; F. ¥ = f, ¥
such that

%}Gl-v-ngfFl , V-0Q,/u  and

’]::I'G;"'sz - F,
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With these operators, equation (81), on separating the variables yields the radial wave equation

d*y 3 d¥%  (MA+2)—f, %) ( 2f, au)
e - ——= — e l[’ = - E e ] ‘P 82
ds 5 as § A A ®2)
where E = 2pn {}( - Qlf_jl: KW=M
. 2M M
Putting s° - 4E , p - BS
we obtain the equation
d2v. 3 dv TOAW + 2 1 K1
R *[‘ '('_Z"l -5t ‘I ¥s = 0 (83)
dp*  p dp o 4 o4
. . . e’ pu
inwhich (i) K = 2f,« = f, = I
( ) 1 ﬁ!—L 1 C \I-—-E

(i) NN +2) = ' —1=A(A+2) —f,0a® = n’—1—f, &
3

Wo ” into (83) we obtain

Substituting Y
i (84)

This is Whittaker’s equation (Erdelyi et al. 1953). The solution which tends to zero as o tends
to infinity is

— P72 1 1 '
= e—,O/Z pnﬂiq, ,% -K +nd,2d +1; p) (85)

where ¥ (a,c; x) is the confluent hypergeometric function. It behaves asymptotically for large
£ such that

r -
Yy ~e~F/2 ~dl I ; (—1}" Ff"i_l/{f_fn -K) . 1 X r'fl/z K + m:_n_) pK_nr“%“m |
"=t C@+%-K  m" O K—n) |
_3
~ (constant) e T (86)

Near the origin, no non-singular solution exists unless ( 5= K+ n') is a negative integer.
We have there

@) —d -y
['(% —K+n')

\[Jq ~

Two discernible cases arise:
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(@) N = — (é - K +n') = an integer.

This solution becomes the same as in the non-relativistic case, namely the Laguerre
polynomials times factors. This is because

24 (-=D"
Ly = 50 ¥ N2 15 p)
and these functions are non-singular at the origin. However, we would then have

S

Should the integer solutions for n be chosen, K is approximately half-integer, in which case the
energy levels are
g-- 1%

K2

and do not tend to the correct non-relativistic limit of the Bohr levels. There are two possible
answers to this dilemma. Firstly, we could choose the solutions where n is half-integer. This
would imply that the scattering theory developed in Sections 3 and 4 was not applicable to such
a pair of particles. An equivalent scattering theory in which n is half-integer can be derived.

(b} From the relation
Ky (5) =Vmexpx/2) ¥w + 4,200+ 15 x) (87)

it can be seen that as « — 0, the solution with integer N cannot give the free particle eigen-
functions K, (%) at negative energies. We can therefore choose N to be half-integer to preserve
this relationship.

In this case the singularity at the origin does not allow us to normalize the solution
over the physical volume element. Such two-boson atoms cannot therefore admit point source
potentials which yield the Bohr levels and are non-singular at the origin. If we assume the two
bosons to be extended sources, it is possible to introduce a surface cutoff at very small values
of S. Using Green’s theorem, we find

(W W, — Wo W, - (Ki-KQJ W, W, "TOP . (88)
p

Making use of the radial wave equation (82) we see that a cutoff at o allows the integral to be

written
[¢4]

IRy

Lim (W, W.— W, W, - (Kl-Kz)] wow, 8 (89)

S
L So
This integral will vanish if

wi (po) ? B,n,,

P = B, , = 0

° Wiley) oK
The higher terms in the expansion near the origin are found from the relation (85) and the equations
(Erdelyi et al. 1953)

‘ . ' ' . 1-c I'(e=1) _
(i) ¥ (a,c;x) = T (-a——_;:—+ 1) da,c;x) + x @ b{a—c+1, 2~c; x)

where
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(i) ® (a,c;x) =1 + ?:x , @+l x*

ECEVER) ©0)
is the confluent hypergeometric function.
For small 5, we obtain
c
(I - 5 -B{2-c) @n' + 1)(B, * 0 —4%)
Kpy = woe oo (1)
Bn—2+'2' Bn+n""'2"

Right at the origin, we would have p, = 0 , B,--n' +; . However, S, and B, both have
to be independent of K. This can only occur if

(i) po = 2V-E S «1/K

which is satisfied if the energy levels appropriate to the problem are given by

G) VE- 2w, fca 92)

The surface cutoff

20 —1)(B, + n' -
S -, @ .11______2__;113:{____52_) 93)
B, + n - 2_)

can be chosen as small as desired, provided the actual limit is never taken to the origin. The
normalizations are found from the relation '

[ dS 'a . 1-24d
Wk Wy g ° (207 =3n" + 2} (po) Sy i 94)
s
G
and hence
3
-7 ~i4 n-Y%
Psgn= 5 (20°=3n+2) (po) Wi,o' (o) . (95)

The energy levels are found to be

a2 !.Lz — al’ ot f2 -
T e = g 2 —— .
E K? o _'— (N +n)* (N * n)'n + 0 (u )__E . (96)

When one mass becomes very large, we find for m, >>m,
E. - m (1— S A O(rx“)) . 97)
2(N+n)* 2(n+ N n
Two points of importance arise
(i) The term proportional to % o' is miséing.

(i) The quantum number n has replaced the (£ + % ) in the normal case of one light
boson in a central field.
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6.2 Linear Harmonic Oscillator

The force
Fo= -3 K,X, (98)
can be represented by the potential

o - 3 ; K, X. (99)

with a wave equation

— e b rkxiv -6y (100)

which separates to give four equations

. | .
,,,,‘;{,2 ¢« o KXW, - b, ¥, , v-1,23,4,

A

where & = 3 &, , ¥ = wwv, . (101)

The K, must transform as tensors. Putting

K, &, [ &

4

SR T T O U ) ST
we obtain
d* vy 2
R s = &Y%, =0 102
T + (o £ (102)

v

The standard solutions are the Hermite polynomials such that

v, (X)) - N, H (2, X)) exp(-1 -ZZVX?}) ’ (103)

o]
1l

L=20+1 , &, = (+p)te, ,on-0,1,2..

d"/
Ny = 0¥
{772 !

There are therefore zero point energies corresponding to all modes of vibration along the
four axes. The time-like vibrations have not been observed and it is not known how they would
manifest themselves. These functions form an orthonormal set over the physical volume element.

6.3 Inverse Cube Law of Force

When Goldstein (1953) formulated the Bethe-Salpeter (1951) wave functions for two spinors
interacting via the ladder exchange of neutral bosons, he obtained the radial wave equation from
the quantum field theory of the form

d? 3 d 47?"\!
dR* ' R R'TT R =0 (104)

in the case of equal masses. This is a special example of the radial wave equation (4(i)) for a
hypercentral inverse cube law of 4-force. Putting 0 = — %{i in equation (4) we find

* 3 d (A2+K)) "
s

a5 as YT e )0 (105)
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which is identical to Goldstein’s equation provided R=QS, 4= A? + K=1n* + K~ 1. In the non-
relativistic limit, this force gives the solutions appropriate to the 1/1? potential. It is therefore
not surprising that he found no bound states, as no non-relativistic bound states exist (Morse

and Feshbach 1953). Goldstein’s solutions

y, 1 @ . . v
s - 5 He ® 5 o = (d-47) (106)

are obviously those for the inverse cube law of 4-force in the relative time theory. No bound states
exist here as well for 0 £ S5 w

6.4 Square Well Potential

With an interaction in equation (4) of
C = -0o , S$<a , (U, a,constants)

O =0,8>a (107)

Ys = A JoTSW , S<a
5 fﬂ[:’s(é’f') S a (108)
where @ = (240 -81"
B o= (208)

In the bound state region & < 0 , hence

(0. .
H, (1818 iB K.(1815) (100)

‘l‘s = iB .
1818 1818

is the solution. These functions tend to zero as S tends to infinity. By choosing boundary
conditions on each solution such that

EL NN

S=a

we also ensure that the internal eigenfunctions form an orthonormal set in the interval 0 < S < a.

The energies of the bound states are obtained by noting that the boundary condition (110) is
equivalent to the conditions

pliey +n] (p) = p] _(0) =0 (111)
when p = p, atthe zeroes of J__,(p). Hence the energy levels are

&, - p,/a . (112)



—929—

6.5 Two-Fermion Atom

There are many possible models of the two-fermion atom, and the one derived here is

chosen mainly for its relative simplicity. The main problem is in finding how to linearise
equation (2). We choose the form

[ &0« pi M+ pa y Q] ¥s- 0

(113)
where ¥, is an eight-component spinor, four components appropriate to one ordinary spinor
and four to the other.
S , .
& - P )
\Il—-ﬁz M ( )}f
A e
\11_,51 M L
Q = Qi.‘ ’
VA S A
_ w2 — M?
= 1+ oM ,
V = relative velocity (114)
The Hamiltonian for the relative motion is
) T A ’);1. Qu_ p1m+(<}
. Vs
Py 75 Qs= Py 1 g py K4 O —p M (115)
in which
1 pv 3
K = p, }\E v A ¥ Ajj
v, X'
7 = g (116)
where we have (Corinaldesi and Strocchi 1963)
Yo Yo Ve Yy T 2 8,11.1/
N R (117)

and the 'yp’s are the usunal Dirac matrices. From (117) we can show that



and using
Qs - é@-g—g ﬂ: ik%*‘%)

we can readily prove that the following relations hold:
L N S ; o @7 12
PP, Yt R, Y P, = 0,

K'YS"“’)/SK:O) KP—P_K=0,

[(H,K] =0, [H,K'] =0

where we choose p,= 1, p = p, = '

. 1
J_uv N A,u.y + -.2" Upv
where % o, is the spin tensor and
2 1 v 1 v 1 v 1 v
] 2 J,Lw J# = 2_ pr A-L + 2_ T N s 787 Ty o
We choose v, - ¥, . Putting
. F, \\
S, 1 F,
We - . 0e ¥, - G ( G. |
Ly ! S
VT g I G;/

we obtain the following set of differential equations

3 I'IGQ\‘ K
—-i8" Qq !&S,g',ﬁ""g‘ E + @&+ - O)F, =0
3 ‘G
_iST Qg - Kp+@-m-0yrm -0
v g2 S
3 ’
is? QS[%/+%-GQ+(6+3H—®)G,=O
H 2
i st F. v K

O, + g Gt (E-N-)G -0

(118)

(119)

(120) -

(121)

(123)

(124)
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With the aid of (119) and assuming that, as in non-relativistic theory, K is integer, the equations

G, = F, ’ G, = F, ’
E+M-yp - K p ooy
ds S
aF, K
6-N-)F, + = ¢ F - 0 (125)

are obtained. These are identical to Dirac’s (1958) radial equations, and he has shown that they
have solutions for bound states provided

0 - —e*/8
& - - Wm’!lld%i,,,m . P - (Kz - il )% ,
1+ e |
o (Pea'yy n' = integer . (126)

When one mass becomes very large, it can be seen from equation (114) that
& » E,and W~ m,as m — @ (127)

and we are left with Dirac’s formula for the fine structure of the hydrogen atom. The relative time
theory therefore works very well in this case.

There is one important feature of this model. Using equation (122) and (116) we find

K'— 5= A{(A+2) + p. K. (128)

Aok~ L _xo3 (129)

and A must be é -integer if we are to obtain the correct fine structure. This has the effect of

making the radial wave equations the same as in the non-relativistic theory, but the angular
eigenfunctions become for example,

S K-%
Y, o-ocdl-t P ) Y (6,9) . (130)

The boson theory given in previous sections does not apply to spinors and the mathematical
theorems such as the covariant addition theorem, and the equations for symmetry conversion
for these eigenfunctions need to be investigated.

Finally we shall indicate how the energy levels in the relative time theory are related
to the spectrum of photons obtained from decaying discrete states. Let (W_, O) be the initial

4-momentum in the C.M. frame of a two-body system where the W, are discrete mass levels. Let
this system decay with emission of a photon of 4-momentum ( v, v} leaving the system in a state
of 4-momentum (W, , — »). By conservation of energy

T
7
Wa*wb+1'),

T
sz = sz - vt

where W, is the C.M. energy in the rest frame of the recoiling system.
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Therefore
Wa — vy =2 = W,

v o= Waf_‘_ﬂi -

MoQ-9)
2 W, e

. 1 (131)
24Q% + M?

where Q. and Q, are the relative 4-momenta in initial and final states respectively. For example,
in the Coulomb field case the levels given by (126) become

2 _ 2 M
v M (Q ﬂ, T_PTE) - 7‘;——____ - [')’a ')/b ]
bo2iQie I M+ 2 (7= D)
1 1
where Ya = ! Yy _1 o T . (132)
; [ + o .
a',,_l NCRTAS L (o ﬂL)”J

., rfa), Py, ﬁb) are the covariant quantum numbers appropriate to states (a) and (b). Compared with
other effects the correction to the levels obtained from the Dirac equation are too small to be tested,
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APPENDIX

It is of some interest to show how the partial waves of covariant angular momentum are
related to the partial waves of ordinary angular momentum. In order that the wave function ¥

in equation (50) should be converted by the Fourier transform to the equivalent wave function
Jr in a particular Lorentz frame, we must have

where
(2 (1)
g - MR g oy gy - MR g
qR {qgR
4
Sg = S - 19" ¢, s,
P2, Y p (t2)
Therefore from equations (32) and (46),
Ssc- L | 5 a-s, - cose)
e sin{ w)
77 2 « £ (E— l’l)' n 2 2 2
= 46 ‘Efo (2 E+1) n§0 (l_Sn) hn (E+ n)! [?E (t1)] (1—t1)?e (Z) |

772 €’
= faf(j— (1— ?‘\’ O—SC (q’z) L

where

Q
1

2 (2t+1)@A-Sy) ?E (z) |* is the conventional differential cross section.






