AUSTRALIAN NUCLEAR SCIENCE
AND TECHNOLOGY ORGANISATION

LUCAS HEIGHTS RESEARCH LABORATORIES

MOD2: A PRE-PROCESSOR FOR THE
MODULA-2 LANGUAGE FOR C COMPILERS

by

J.CRAWFORD

F,P. CRAWFORD'

ABSTRACT

This report describes a translator from Modula-2 to C written for a Pyramid 90x computer. It contains
an overview of the Modula-2 language, followed by a detailed description of the translator. Also included
is a description of how to use the translator and a summary of the installation procedure.

1+ Now at Q.H. Tours, PO Box 630, North Sydney, NSW 2060

National Library of Australia card number and ISBN 0 642 59875 4

The Australian Nuclear Science and Technology Organisation
replaced the Australian Atomic Energy Commission on 27 April
1987. Reports issued after April 1987 have the prefix ANSTQ
with no change of the symbol (E, M, S or C) or numbering
sequence.

CONTENTS

1. INTRODUCTION

2. DESCRIPTION OF THE PRE-PROCESSOR

2.1 mod2.sh

22 mic

23 m2c
3. DEVELOPMENT OF THE PRE-PROCESSOR
4. EVALUATION OF THE PRE-PROCESSOR
5. UNSUPPORTED FEATURES
6. FUTURE DIRECTIONS
7. CONCLUSIONS
8. REFERENCES
Appendix A mod2 Components
Appendix B Extract from mod2.sh
Appendix C Usage of mod2
Appendix D Error Messages
Appendix E EBNF Notation for symbo! Input
Appendix F EBNF Notation for modula Input
Appendix G Installation Details

—

L N« = L T o e

12
15
17
21

28

1. INTRODUCTION

Modula-2 is a general-purpose programming language, designed primarily for system programming.
Although it is similar to its predecessor Pascal, the design goals for each were quite different. Pascal was
designed by Wirth [Jensen and Wirth 1975] as a teaching language that emphasised structured
programming concepts and portability, whereas Modula-2 {Wirth 1980] has taken most of the features of
Pascal and transformed or extended them to allow system and multiprogramming,

In its general features, Modula-2 clearly demonstrates the influence of Pascal. It has adopted most of
the data-type concepts of Pascal with some significant additions. The language’s main additions are as
follows:

(i) The module concept, and in particular the facility to split a module into a definition part and an
implementation part.

(ii) The concept of the process as the key to multiprogramming facilities,
(iiiy The low-level facilities which make it possible to breach the rigid type consistency rules.
(iv) The procedure type which allows procedures to be dynamically assigned to variables,

Unfortunately, there are not many Modula-2 compilers available, and none for any of the operating
systems supported at the Lucas Heights Rescarch Laboratories, There are, however, a number of C
compilers available for these systems. As C is also a system programming language it was decided to
develop a translator to convert Modula-2 programs to C.

Other possible languages as the target of the translator were FORTRAN and Pascal. FORTRAN is so
dissimilar to Modula-2 that an enormons effort would have been required. As an example, FORTRAN
does not support recursion, a very hasic concept in Modula-2 (and C). Although Pascal is more similar to
Modula-2 than C, Modula-2's extensions over Pascal would be difficutt, if not impossible, to implement in
Pascal.

The language C was designed and implemented in 1972 by Ritchie [Kemnighan and Ritchie 1978]. It
has been used to implement a wide variely of applications, mostly under the UNIX ™ operating system. It
has proved to be a very popular language, with compilers being developed for most modern computers,
including many of the computers used at Lucas Heights.

C is a general-purpose programming language which features economy of expression, modern control
flow and data structures, and a rich set of operators. It is neither a ‘very high level’ language, nor a ‘big’
ong, and is not dedicated to any particular area of application. But its absence of resirictions and its
generality made it more convenient and effective for this particular task, because it has many of the
features also available under Modula-2.

The option of developing a Modula-2 compiler rather than a translator was rejected for many reasons,
but primarily both because of the time involved and the objective of making the result portable across a
number of different machines.

2. DESCRIPTION OF THE PRE-PROCESSOR

There is no one program that can be said to be the Modula-2 to C translator; rather it is a set of separate
programs cach of which performs a specific function. The flow of translation is shown in figure 1.

™ UNIX is a registered trademark of AT&T in the USA and other countries,

file.mod

Syntax
Analysis

Declaration
Analysis

Body
Analysis

file.mtc

modula

file.def

|

Syntax
Analysis

file.sym w=—

file.asc

Ccode
Generator

cec

a.out

Figure 1. Compiler Overview

Declaration
Analysis

C code
Generator

|

file.decl

mlc

-3-

The translation consists of a number of distinct parts, namely,
(a) parsing and wansformation into a tokenised form (performed by mtc),
(b) generation of the appropriate C declarations and definitions (largely performed by symbol),
(c) generation of the C code for statements and expressions (performed by modula),
{d) merging of the separate parts of the C code, i.e. (b) and (¢} above, (performed by m2c), and
(e} compilation of the C code to produce an executable file (performed by cc).

The inclusion of the C compiler in this list allows executable code to be generated on any system, however
this is ancillary to the ranslator.

2.1 mod2.5h

As there are a number of different programs to be invoked in a set sequence (see appendix A), rather
than expecting a user to carry out the sequence, it is preferable to automate the process. Under the UNIX
operating system this is done by creating a shell script. In its simplest form this is just a list of commands
to be exccuted sequentially by the user’s chosen command processor (i.e. shell). In more complicated
examples, it can include high-level control flow structures and variable substitution.

A script to perform a Modula-2 transiation and subsequent compilation of the C code is called mod2.5h
or, more commonly, mod2 (see appendix B). This script takes as its arguments a number of options to
control the translation, followed by a list of filenames whose extensions indicate what type of translation is
required. A full description of the use of this procedure is given in appendix C, with a listing of the error
messages that might be given in a compilation in appendix D. The extensions understood by mod2.sh are
given in table 1.

TABLE 1.
EXTENSIONS ACCEPTED BY mod2.sh

Ext Program
.mod | mic

def mic

.obj m2c
mtc | m2c
.dfn mac

£ ce

.0 ce

2.2 mic

mitc was developed from Wirth's original Modula-2 compiler [Geissmann 1981] implemented on the
Lilith computer. The original compiler was writien in Modula-2, containing four separate passes and
generated ‘M-code’, Aside from the Lilith compiler, a Modula-2 compiler producing code for PDP-11
computers running RT-11 had been developed [Geissmann and Jacobi 1981} which was later ported to a
PDP-11/45, running UNIX Version 6, by Dr J. Tobias.

The compiler was originally organised into a base part and a number of separate overlays, with the base
remaining in memory for the whole of the execution and the overlays loaded as required. The reason for
this was to overcome addressing limitation on small address space machings. As this problem does not

apply to the Pyramid computer, the structure has been reorganised to eliminate overlays, by incorporating
them as procedures,

Since the aim of the project was to produce C code, the first three passes of the Lilith compiler were
taken and modified to produce output suitable for conversion. This involved extensive modifications to the
format of the symbol table to keep more detailed information on the structure and order of declarations, to
keep track of the scope of variables, to include back pointers to procedures and modules, to generate

4.

identifiers unique to the C code, and o maintain import and export lists.

As well, the output in the intermediate code for statements and expressions contains additional
information about the types of the operands and information to remove the nesting of procedures, to
generate appropriate declarations for imports and exports, and 0 handle differences in the method of
passing arguments to procedures/functions.

Mic handles both implementation and definition modules. It assumes that files with a .def extension are
definition modules and those with a .mod extension are cither an implementation module or a program
module, Because mic requires all imported definition modules to be compiled before they are referenced
by any other module, it is generally necessary to compile all the definition modules first. Further, the
compiler generates a timestamp on each definition module compilation; recompilation of such a module can
generate errors when compiling other modules. In this case, the implementation module and all units
importing this madule must be recompiled as well,

2.3 m2¢
The generation of the C code from the intermediate form produced by mic is accomplished by m2¢,
The process is divided into two parts - the generation of declarations, and the generation of statements and

expressions. These are carried out by separate programs (symbol and modula) and the resulting oufput is
combined to form the final C program.

m2c is a simple program that invokes symbol and modula and then, by the use of UNIX pipes (tools that
allow the user to take the output of one command and use it as the input for another command without
creating temporary files), it reads the output from cach program in turn, switching between the two when it
detects a specific synchronisation character in the input stream. Processing of this input ceases and m2c¢
writes this merged stream to generate the C code.

2.3.1 symbol
symbol is used to produce both the definition module and the definitions and declarations within

implementation and program modules. 1t is a recursive descent parser for the grammar described in an
Extended Backus-Naur Form (EBNF) given in appendix E,

It takes its input from an intermediate file gencrated by mic containing a stream of one byte long
tokens. Constants such as integer and real numbers take an appropriate number of bytes. Strings end with

a NUL (i.e. a single byte of value 0). Identifiers are stored in a separate file and an offset in this file is
given.

2.3.2 modula

modula is used to produce the statements and expressions from the implementation and program

modules. As with symbol, it is a recursive descent parser for the grammar described in EBNF given in
appendix F, :

It takes as its input a stream of two-byte tokens, the first byte of which contains the token value and the
second its position on the current Modula-2 source code line (presently ignored). Constants, strings and
identifiers are handled in a similar manner to symbol.

3. DEVELOPMENT OF THE PRE-PROCESSOR

The development of the translator stemmed from an existing compiler on the PDP-11 computer, as
described above. The initial stages involved modifying the Lilith compiler on the PDP and sending the
intermediate output to the Pyramid for the final stages of the translation. Later the required passes of the

compiler were run through the above procedure to move all of the separate parts oato the same machine
(the Pyramid).

The modifications performed to mtc were relatively siraightforward once the translation procedure was
established. The major problem was to remain within the size restraints imposed by the PDP's
architecture, as the existing compiler was already close to the limits.

-5.

The development of the parts on the Pyramid was a much more complicated process, as all the
programs had to be developed from basic principles. This was aided by the tools available under UNIX,
These included

e yacc [Johnson 1979], a program to take a syntax description and generate efficient C code to parse
the grammar,

e make [Feldman 19791, a program {0 maintain a group of files, and using a knowledge of their
dependencies perform appropriate operations on the files to generate new programs, and

« error, which inserts error messages in the correct locations in the source files.

The effects of some of these tools can be seen in the structure of the ranslator. For example, yacc can
only parse one grammar at a time; to parse the two intermediate streams it is necessary to write the
separated programs, symbol and modula, then to merge the results.

4. EVALUATION OF THE PRE-PROCESSOR

A final step in the development of the translator was the evaluation of its performance, in relation to its
usability, its conformance with the standard and its speed,

The shell script mod2, enables the user to treat the compilation of a Modula-2 program in a manner
similar to any other compiler on the system, for example cc. The options for the casual user are the
standard over the operating system, whereas those who wish to use all the features of the translator are stilt
accomodated.

As the first three passes are based on another Modula-2 compiler, the translator conforms very closely
to the language as described by Wirth [1980]. Furiher, as Modula-2 and C are similar, almost all of the
features of Modula-2 are supported. This has been demonstraied both by the translation of the compiler,
which makes extensive use of the language, and a number of other programs, most of which required no
changes and, in the worst case, only the modification of some non-portable features.

In terms of speed of the translator/compiler, there are two different aspects - the time taken for
compilation and the execution time of the program. Qbviously, the time taken for compilation will be
greater than for the equivalent C program. Some simpie tests, on smalt programs, have indicated that
compiling a program with mod2 takes about twice as long as the compilation of an equivalent C program.
However, this relative difference should not be expected for farger programs, as mod2 has a number of
predeclared objects which would add a constant overhead to the compilation time. The relative difference
would probably reduce to a factor of about 1.5 for large programs.

The execution time of the resulting code is of more interest, and the results of a number of test are
given in the table 2. The basic algorithm used for the results was Eratosthenes’ sieve for generating prime
pumbers. This was coded in Modula-2 (and converted to C on the Pyramid 90x), C and Pascal and the time
taken to generate the numbers between one and 10003 repeated 100 times was found. This test was
conducted ten times and the results averaged on an IBM 4381-3 (System 370), PDP-11/45, Pyramid 90x
and a VAX-11/780. A limited test was also conducted on an IBM PC-XT. To further test the efficiency of
the code two variants of the program were tesied, declaring variables dynamically (e.g. register for C, local
to the procedure for Pascal and Modula-2) and as static or global quantities.

In general, the times for the Modula-2 translator compare favourably considering that no effort has
been given to producing efficient code. The only case where there is a major difference in time between
the output from the translator and the other languages is for local references on the Pyramid 90x. This is
caused by the architecture of that machine. If possible, all local variables of the size of an integer are
stored in a register and both C and Pascal take advantage of this; however, the Modula-2 translator
generaies structures rather than separate variables and cannot take advantage of this fact,

-6-

TABLE 2.
EXECUTION TIMES (s) FOR ERATOSTHENES’ SIEVE

Machine Local Global
C Pascal | Modula-2 C Pascal | Modula-2
[— — —nie—— |
IBM 4381 3.92 441 8.23 647 441 6.65

Pyramid 90x || 648 | 7.56 24.13 || 23.20 | 24.44 24.04
VAX-11/780 || 13.92 | 18.28 16.73 1631 | 17.95 16.84
PDP 11/45 26.64 | 46.43' 48.08 4297 | 49.03" 46.18
IBMPC-XT [| 702 | 902 95.1 804 | 934 91.6

5. UNSUPPORTED FEATURES

Although the translator supports most of the features of Modula-2, there are three that have not been
implemented:

» Concurrent processes. These could be implemented, but, as it was not needed for the applications
we were interested in, this has not been done. Furthermore, something similar could be done using
the existing system calls fork and exec.

» Priorities and monitors. In Modula-2, these features are provided with the intention of developing
operating systems. Under UNIX, low level interrupts are handled by the system itself and therefore the
features were not implemented.

» Runtime index tests. This is a possible future feature, as the type of environments that the programs
will run in often require it.

6. FUTURE DIRECTIONS

As the translator is working, the task has changed to one of improving it, both in terms of the code
produced and its internal operation, The first task is to remove as much redundant code as possible. This is
both possible and simple as, now that the previous restrictions on the size of the code have been lifted, the
original passes of the Modula-2 compiler can be examined as a single unit rather than as separate units.

The original Modula-2 compiler, and this translator, were based on the first definition of Wirth [1982].
Since then, he has published two more [Wirth 1983, 1985] As each edition has introduced small changes to
the language, a futire task is to bring the translator up to date.

7. CONCLUSIONS

The Modula-2 to C translator, mod2, is now running on the ANSTO Pyramid computer and is being
used for its original purpose, that of moving programs from the aging PDP-11/45. Even though it is now in

general use it is in need of further testing and, as indicated above, there is probably more development
work to be done.

The translator has proved to be very popular at sites other than Lucas Heights. There have been a
number of requests to install it on Pyramids and other computers. This popularity is partly due to the
increased emphasis on Modula-2 within universities, but also because of the flexibility of the wanslator.
The ability to use it on any machine which has a C compiler conforming to recent standards means that it is
not restricied by either machine type, or even operating system,

! Compiled with Modula-2 compiler as no Pascal compiler was available.

-7-

The project has demonstrated the closeness in structure of Modula-2 and C. Despite the fact that they

use different symbols for operators and control structures, the difference is merely cosmetic, the underlying
fabric being the same.

8. REFERENCES

Feldman, F. I, [1979] - Make - A Program for Maintaining Computer Programs, UNIX Programmer’s
Manuat, 2A. Bell Telephone Laboratories Inc, Seventh Edition.

Geissmann, L, [1981] - Overview of the Modula-2 Compiler. Institut fur Informatik, ETH. Draft version.

Geissmann, L. and Jacobi, C. {1981] - Overview of the Modula-2 Compiler M2M. Institut fur Informatik,
ETH. Draft version.

Jensen, K. and Wirth, N. [1975] - Pascal User Manual and Report. Springer-Verlag, New York. Second
Edition.

Johnson, S. C., [1979] - Yacc: Yet Another Compiler-Compiler, UNIX Programmer’s Manual, 2B, Bell
Telephone Laboratories Inc, Seventh Edition.

Kemighan, B. W. and Ritchie, D. M. [1978] - The C Programming Language. Prentice-Hall, Englewood
Cliffs, New Jersey.

Wirth, N. [1980] - "MODULA-2". ETH Institut fur Informatik Report No. 36.

Wirth, N. [1982] - Programming in Modula-2. Springer-Verlag, Berlin, Germany.

Wirth, N, [1983] - Programming in Modula-2. Springer-Verlag, Berlin, Germany. Second Edition.
Wirth, N, [1985] - Programming in Modula-2. Springer-Verlag, Berlin, Germany. Third Edition.

-9.
APPENDIX A
mod2 COMPONENTS

There are a number of separate processes required for the translation from the Modula-2 source code to
the final executable:
* mic,
s m2c, and
. CC.
These programs also have a number of separate sub-components:
@y form2c
« symbol, and
« modula.
(ii) forcc
* cpp,
» coom,
e as, and
o id.
In this report we assume that cc can be treated as a single module, details of the options and the
separate parts can be found in the UNIX Programmer’s Manual, Vol 1.
Al. mic

mic takes the Modula-2 source and generates the intermediate code. It is invoked with the following
command:

mic [-options] filename

where [-options] are

Option Default Meaning
-l off Generate a listing file
-q off Query for symbol file names
-v off Print compiler version information

N.B. All options are given as a single letter preceeded by a dash (*-").

The filename is the name of the file to be ranslated. The suffix .mod implics an implementation module

or a program module and .def implies a definition module, If a suffix is not given the default is assumed to
be .mod.

During execution of mtc, a message indicating the start of each pass is written to the standard output,
and any errors detected during this pass are signalled by the message "---- error” on the standard output,
with the corresponding error number written in the listing file (if z listing is requested - see *-I' above). If
errors are detected then parsing stops after pass 3.

A2.ml2c

As explained previously, m2c runs two separate processes and handles the interleaving of their output.

-10-

This is accomplished by invoking the two programs simultaneously, with an option to produce a
synchronisation character at appropriate points. The synchronisation charater is currently ASCII character
STX {(hex 2) and must occur as the first character on the line, This entire line is discarded.

m2¢ is used as follows:

m2c [-a ascfle] {-D] [-d] [-h] [-n] [-O] [-0 outfile] {-p] {-s symfile] [-v] infile
Possible options for m2¢ are

Options Default Meaning
-a ascfile file.asc File name for stings file from mtc.
-D false Force symboi to treat input as a definition module.
-d# 0 Set debug level (0-3).
0 - no debug

1 - dcbug output from m2c
2 - debug output from modula
3 - debug cutput from symbol

-h false Print usage message.
-n false Force modula not 1o test for a definition module,
-0Q false Process intermediate files in PDP format (512 byte blocks),
-0 oulfile file.c Output file name.
An output file name of *-’ signifies standard ocutput,

-p false Parse only - no cutput files produced.
-5 symfile file.mtc Declaration file name from mtc.

file.dfrn
-v false Verbose option - print more informational messages.

N.B. Multiple options can be concatenated where it makes sense, e.g. the string *-D -n -0’ is equivalent to
“-Dn0O’.

In most cases, the options to m2c are passed directly to the relevant program, the only cases where this
is not so is with the debug option (*-d") and wiih the symbol file option (*-s") which becomes the file name
given to symbol to be processed.

m2c can be given multiple file names to be processed, which can be either of the form file.ob/ for an
implementation or program module, or file.dfr for a definition module. If no extension is given then it is
assumed to be an implementation module. The output file is given .c as an extension (i.e. a C program).

The only messages produced by m2c are informational or messages concerning implementation errors.
One notable message is ‘m2c: Extra ETX on objfile’! (or ‘symfile’). This indicates that extra
synchronisation characters were found on one of the input streams after the other had terminated. It is
usually caused by either modula or symbol terminating abnormally,

A3, modula

modula processes the statements and expressions from muc and can be run separately for debugging
purposes.

1. The message should read ‘m2¢c: Extra STX ..." but has not been changed for historical reasons.

-11-

Its usage is:

modula {-a ascfile] [-c] [-d] [-h] {-O] [-o outfile] [-n] [-p] [-s symfile] infile
The meaning of most of these options is the same as for m2¢, with the only differences being

Option Default Meaning
-c false Include synchronisation characters in output.
-d false Debug enabled.
-5 Currently not supported.

At present only a single file can be processed; it follows the same naming conventions for
implementation or program modules in m2¢, and produces a file with extension .¢% Unless the verbose or
debug option is given there should be no messages produced.

modula has the ability io invoke symbol if it finds that a new declaration file is required.

A4. symbol

symbol processes the declarations from both implementation and program modules and from definition
modules. It is invoked by

symbol [-a ascfile] [-c] [-d] [-D] {-h] [-O} {-o outfile] {-p] infile
where the options are as for m2¢ and modula.

As for modula, only one file can be processed at a time, The input and output file ¢xtensions depend on
the module type and are given by

Module Type Input Output
Program e .
implemeniation .mtc .c
definition .dfn .decl

If no extension is given, it is assumed to be an implementation module. The output from a program or
implementation module is expected to be merged with the output from modula, but that from the definition
module should be used as an include file by the C preprocessor (i.e. #include "file.decl™).

In the case of modula, unless the verbose or debug option is given no messages should be produced.

2. Although this is velid C code, it is not usually compilable as it is missing all the declarations.

-12-

APPENDIX B
EXTRACT FROM mod2.sh

The following extract is designed to indicate the procedure for automating the translation process. Iis
usage is described in appendix C, however this description is aimed at the level of a normal user rather

than a developer.

Aside from the options given in appendix C there are a number of other options avatlable within this
script to allow more control. These options are

Option

Meaning

+t1*
+12*
+3%
+1
+2
+r

Additional arguments to be given to the mic step.
Additional arguments to be given to the m2¢ step.
Additional arguments to be given to the cc step.
Only perform the first step (mtc).

Only perform the first two steps {mitc and m2c).

Do not remove any intermediate files when finished.

These options should not be used in normal circumstances and may be removed in the future.

This script should be taken only as a guide to how the parts of the translation process fit together and
not as the only way to do the translation.

#! /bin/sh

#

Modula-2 te C translator

#

Written by:

Jagoda Crawford and Frank Crawford

¥ 28 Jul 8¢

#

Australian Nuclear Science and Technology Organisation
#

Sk 3k %

Some definitions
Bin=/uZ/modula/Bin
Lib=/u2/modula/Lib

A shell to do all of the Modula-2 Compilation

Include=/u2/modula/Include

PATH=5Bin: $PATH; export PATH

Parse the args
while [5# -ne 0]
do

case "§1" in

-g) mtcopt="Smtcopt -g"

.
A

13-

+£[123]1%)
case ‘expr "$1" : +t23]).*’" in

1) mtcopt="S$mtcopt "‘expr "S$1" ; ‘+tl)’°
2} ;;copt="$m2copt "ragpr "S1Y ¢ f+t2) 70
3} ;;opt="$ccopt "rexpr "S$1v : f+£3)7°
esac;;

..
F o

+1) nom2c=1
nocc=1

]
LN

+2) nocc=1

v

+r} norem=1

.
rr

[-+3*i"")
echo "Usage: ‘basename $0‘ [-glv] {-Dd*n] ([-cg*pOSI*] [+t([123]*] [+12r]\
[-o0 name] file [...1" 1>&2
exit 1

esac

shift
done

i€ [5# -eq 0]
then

echo "Usage: ‘basename $0°' [-glv] [=Dd*n] [-cg*pOSI*] [+t[123]1*] ([+12r}\
[-o name]l] file [...1" 1>&2

exit 1
£i
for 1
do
{ "Soutput" = "§i"] && \
echo "‘basename $0': -o option would overwrite $i" 1>&2 && \
exit 1

name=‘basename $i‘
name=‘expr "S$name® : ‘\(.*\)\..*" \| "Sname"’®

case ‘expr "S$i" : f AN N(LKX\)}YDY dn

mod) mtefile="Smtofile $4v

-14-

m2cfile="$m2cfile $name.obj"

ccfile="$ccfile Sname.c"

delfile="Sdelfile $name.tmp"

["$nomZ2c™ -ne 1] && delfile="3delfile Sname.obj S$name.mtec $name.asc”
["$noce" -ne 1 1 && delfile="$%delfile $name.c"

def) mtcfile="Smtcfile 5i™

esac
done
if [~n "Soutput"” -a $# -ne 1 -a \("$nocc" -eq 1 ~o -z "Sccfile™ \)]
then
echo "‘basename $0': -0 option given with multiple ocutput files"™ 1>&2
exit 1
£i

[=n "S$mtcfile™] && {
mtc $mtcopt Smtcfile || exit

["$nom2¢" -ne 1 -a -n "Sm2cfile"™] && |
m2¢c Sm2copt Sm2cfile || exit

“Snocge” -ne 1 -—a -n "Sccfile"] && |
cc -o §{output-a.out} -I3Include/Decl Sccopt $ccfile $Lib/libmedula.a || exit

["Snorem" ~ne 1 -a -n "S$delfile"] && rm -f 35delfile

exit 0

-15-

APPENDIX C
USAGE OF mod2
NAME
mod?2 - Modula-2 compiler
SYNOPSIS
mod2 [option } name ...
DESCRIPTION

Mod2 is a Modula-2 compiler. If given an argument file ending with .mod, it will compile
the file and load it into an executable file called, by default, a.cut.

A program may be separated into more than one .mod file. Mod2 will compile a number
of argument .mod files into object files (with the extension .0 in place of .mod). Argument
files ending in .def are assumed to be a definition module and are converted into an
equivalent file with a .decl extension. Object files may then be loaded into an executable
a.ouw file. Exactly one object file musi supply a program module to create an executable
a.out file successfully. The rest of the files must consist only of implementation and
definition modules which comprise separate modules within the program,

Object files created by other language processors may be loaded together with object
files created by mod2. The functions and procedures they define must have been declared in
def files imported by all the .mod files which call those routines.

The following options have the same meaning as in cc{1), pascal(1) and f77(1). See
1d(1) for load-time options.

- Suppress loading and produce ‘.0’ file(s) from source file(s),

-g Have the compiler produce additional symbol table information for sdb(1).
-gX Have the compiler produce additional symbol table information for dbx(1).
-0O[G,P] Invoke an object code optimiser. The —O option, \;hich is equivalent to

-OG, performs both global and peephole optimisations. The —OP option
performs peephole optimisations only. The global optimiser significantly
increases compile time and, under normal circumstances, should only be
invoked when development of the program is complete. The global
optimiser assumes a single process and should not be used on programs that
use forks, signals, or shared memory.

P Prepare object files for profiling, see prof(1).

-5 Compile the named program, and leave the assembler-language output on the
corresponding file suffixed ‘.s’. (No ‘.0 is created.).

-0 output Name the final output file output instead of a.out,

-1 dir “.decl’ files are always sought first in the directory of the file argument, then

in directories named in I options, then in directories on a standard list.

The following options are peculiar to mod?2:

-1 Make a program listing during translation including error messages.
-q Prompt for .sym files

-y Verbose option.

-D Force generation of .decl file.

-d* Set debugging level.

- 16 -

-n Don’t generate decl file.

Other arguments are taken to be loader option arguments, perhaps libraries of modula

compatible rontines. :

FILES
file.mod modula source files
file.def definition module source file
mod?2 control program (shell script)
Ju2/modula/bin/mtc
fu2/modula/bin/m2c compilers
fbinfce C compiler
fbin/ld link editor
JuZ/modula/Lib/libmodula.a intrinsic functions and 1/O library
flib/libc.a standard library, see intro(3).
fu2/modula/Include/{ Dect,sym,def) definition modules for system library.
BUGS

Definition modules must be processed before the corresponding implementation module or
any module that imports it.

There are a lot more files generated than those given above; some of them have to be
retained between compiling the definition module and the implementation module.

-17 -

APPENDIX D
ERROR MESSAGES

The following is a list of the error messages generated by mic in a source listing, if it is requested.

L~ s W O

21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

illegal character

constant out of range

open comment at end of file

string terminator not on this line

too many errors

string too long

too many identifiers (identifier table full)
too many identifiers (hash table full)

identifier expected

integer constant expected

rl1" expected

;' expected

block name at the END does not match
error in block

;=" expected

error in expression

THEN expected

error in LOOP statement
constant must not be CARDINAL
error in REPEAT statement
UNTIL expected

error in WHILE statement

DO expected

error in CASE statement

OF expected

f:1' expected

BEGIN expected

error in WITH statement

END expected

')’ expected

error in constant

f=' expected

errcor in TYPE declaration

'{' expected

MODULE expected

QUALIFIED expected

error in factor

error in simple type

',’ expected

error in formal type

error in statement sequence
.’ expected

export at global level not allowed
body in definition module not allowed

56
57
58
59
60
61

70
7L
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
80
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

.18 -

TO expected

nested module in definition module not allowed
1}’ expected

r..! expected

error i1n FOR statement

IMPORT expected

identifier specified twice in import-list
identifier not exported from qualifying module
identifier declared twice

identifier not declared

type not declared

identifier already declared in module environment

value of absolute address must be of type CARDINAL
scope table overflow in compiler

illegal pricrity

definition module belonging to implementation not found
structure nct allowed for implementation cof hidden type
procedure implementation different from definition

not all defined procedures or hidden types implemented

incompatible versions of symbolic medules
function type is not scalar or basic type

pointer-referenced type not declared

tag-fieldtype expected

incompatible type of variant-constant

constant used twice

arithmetic error in evaluation of constant expression
range not correct

range only with scalar types

type-incompatible constructor element

element wvalue out of bounds

set—-type identifier expected

undeclared identifier in export-list of the module

wrong class of identifier

no such module name found

module name expected

scalar type expected

set too large

type must not ke INTEGER or CARDINAL
scalar or subrange type expected
variant value out of bounds

illegal export from program module
code block for modules not allowed

- 19 -

120 incompatible types in conversion

121 this type is not expected

122 wvariable expected

123 incorrect constant

124 no procedure found for substitution

125 wunsatisfying parameters of substituted procedure
126 set constant out of range

127 error in standard procedure parameters

128 type incompatibility

129 type identifier expected

130 type impossible to index

131 field not belonging to a record variable

132 too many parameters

133

134 «reference not to a variable

135 illegal parameter substitution

136 constant expected

137 expected parameters

138 BOQLEAN type expected

139 scalar types expected

140 operation with incompatible type

141 only global procedure or function allowed in expression
142 incompatible element type

143 type incompatible operands

144 no selectors allowed for procedures

145 only function call allowed in expression

146 arrow not belonging to a pointer variable .
147 standard function or procedure must not be assigned
148 constant not allowed as wvariant h
149 SET type expected

150 illegal substitution to WORD parameter

151 EXIT only in LOOP

152 RETURN only in PROCEDURE

153 expression expected

154 expression not allowed

155 type of function expected

156 integer constant expected

157 procedure call expected

158 identifier not exported from qualifying module
159 code buffer overflow

160 illegal value for code

161 call of procedure with lower priority not allowed

200 compiler error
201 implementation restriction
202 implementation restriction: for step too large
203 implementation restriction: boolean expression too long
204 implementation restriction: expression stack overflow,
i.e. expression too complicated or too many parameters
205 implementation restriction: procedure too long
206 implementation restriction: packed element used for var parameter

-20-

207 implementation restriction: illegal type conversion
220 not further specified error

221 division by zero

222 index out of range or conversion error

223 case label defined twice

-21-

APPENDIX E
EBNF NOTATION FOR symbol INPUT

El. SYNTAX FOR ".04/" FILE.

El.1. Syntax
1 Unit=
2 Header=
3 SymFile=
4 Value=
5 ModuleKey =
6 DefModName =
7 Ident=
8 SymbolModule =
9
10
11
12 Definition =
13
14
15
16
17
18 ConstDeclaration =
19 Constant =
20 Qualldent =
21 RealConst=
22 RHigh=
23 RlLows=
24 StringConst =
25 TypeDeclaration =
26 Type=
27
28
29 SimpleType=
30 Enumeration =
31 Subrange =
32 ArmayType =
33 RecordType =
34 Fields =
35
36
37
38 Variant =
39 CaselLabelList=
40 Caselabel =
41 SetType=
42 PointerType =
43 ProcType =
44

Header { SymboiModule) ENDFILESS .
SymFile ModuleKey DefModName .

Value . / symbol file syntax version /
NORMALCONSTSS Number .

Value Value Value . / compilaticn time stamp /
Ident .,

(IDENTSS | SYMBOLSS) Spix .
UNITSS ModuleKey Ident
[IMPORTSS [[UNITSS] Qualldent } }
[EXPORTSS { Qualldent }]
{ Definition } ENDUNITSS .
CONSTSS { ConstDeclaration } |
TYPESS { TypeDeclaration } |
PROCSS ProcedureHeading { Definition] ENDUNITSS |
VARSS { VarDeclaration } |
MODSS Qualldent [EXPORTSS { Qualldent }]
{ Definition } ENDUNITSS .
Qualldent Constant .
Value Qualldent | RealConst | StringConst .
Ident { PERTIODSS Ident } .

REALCONSTSS RHigh RLow , :
Number . { upper part of read number /
Number . [/ lower part of real number /

STRINGCONSTSS { Character } "0C’ .
Qualldent [OPAQUESS] Type .
SimpleType | HIDDENTYPSS | ArrayType |
RecordType | SetType | PointerType |
ProcType .
[STRUCTTYPSS] Qualldent | Enumeration | Subrange .
LPARENTSS { Qualldent Value } RPARENTSS .
LBRACKETSS Constant RANGESS Constant RBRACKETSS .
ARRAYTYPSS SimpleType OFSS Type .
RECORDTYPSS Fields { Fields } ENDSS .
Ident COLONSS Type |
CASESS [Ident] COLONSS Type Ident OFSS Variant
{ OFSS Variant } [ELSESS Ident Fields { Fields }]
ENDSS.
Ident CaseLabelList COLONSS Fields { Fields }.
CaseLabel { CaseLabel }.
Value.
SETTYPSS SimpleType .
POINTERTYPSS Type .
PROCSS LPARENTSS
{ [VARSS] [Ident COLONSS] [POINTERTYPSS |

/ name of compiled definition module /

.22 .

45 Qualident }

46 RPARENTSS [COLONSS Qualldent] .
47 ProcedureHeading = Qualldent ProcNum ProcType .

48 ProcNum = Value

49 VarDeclaration = Qualident [AbsAddr } COLONSS Type .
50 AbsAddr= LBRACKETSS Value RBRACKETSS .
51 Spix= Pointer in ASC file .

Again if Spix < 0 then internally generated name.

The following is a list of terminal and non-terminal symbols, followed by the line numbers on which the
symbol appears. The line number on which the symbol is defined is precided by *-".

E1.2, Non-terminal Symbols

AbsAddr -50 49

ArrayType 3226

CaseLabel 40 39

CaseLabelList 38

Character 24

ConstDeclaration -18 12

Constant 31 -19 18

DefModName -6 2

Definition 17 14 -12 1

Enumeration 30 29

Fields 38 36 -34 33

Header -2 1

Ident 44 38 36 35 34 20 8 -7 6
ModuleKey B -5 2 -
Number 23 22 4

PointerType 42 27

ProcNum -48 47

ProcType 47 43 28

ProcedureHeading -47 14

Qualldent 49 47 46 45 30 29 25 20 19 18 16 10
RHigh 22 2

RlLow <23 21

RealConst -21 19

RecordType 33 27

SetType -41 27

SimpleType 41 32 29 26

Spix -51 7

StringConst -24 19

Subrange -3 29

SymFile -3 2

SymbolModule -8 1

Type .49 42 35 34 32 .26 25
TypeDeclaration -25 13

Unit -1

Vatue 50 48 30 19 5 -4 3

VarDeclaration -49 15

Variant

E1.3. Terminal Symbols

ARRAYTYPSS
CASESS
COLONSS
CONSTSS
ELSESS
ENDFILESS
ENDSS
ENDUNITSS
EXPORTSS
HIDDENTYPSS
IDENTSS
IMPORTSS
LBRACKETSS
LPARENTSS
MODSS

NORMALCONSTSS

OFSS
OPAQUESS
PERIODSS
POINTERTYPSS
PROCSS
RANGESS
RBRACKETSS
REALCONSTSS
RECORDTYPSS
RPARENTSS
SETTYPSS
STRINGCONSTSS
STRUCTTYPSS
SYMBOLSS
TYPESS

UNITSS

VARSS

-23.

32
35
49 46 44 38
12
36

33

17 14 11
16 10
26

50 31
43 30
16

36 35 32
25 -

20

44 42
43 14
N

50 31
21

33

46 30
41

29
13

44 15

35

34

-9 .

APPENDIX F
EBNF NOTATION FOR modula INPUT

F1, SYNTAX FOR ".dfn" AND ".msc" FILES,

F1.1. Syntax
1 Unit=
2 Module =
3 Definition =
4 Procedure =
5 Npr=
6 NptuList=
7 Block=
8 StatSequence =
9 Statement=
10
11
12
13
14
15
16
i7
18
19
20
21
22
23
24
25 Expression =
26 RelOp=
27 SimpleExpr =
28 AddOp=
29 Term=
30 MUIOp =
31 Factor=
32
33
34
35 Variable=
36
37
38 FieldLevel =
39 Constant =
40 Paraml.ist=
41
42 Element=
43 Value =
44 TypeStruct =

[MPLEMENTATION] Module EOP .
MODULESY NptList { Definition } ENDBLOCK .
Module { Procedure .
PROCEDURESY NptrList Block .
Spix ..
Nptr { FROMSY Nptr } .
{ Definition } [BEGINSY StatSequence] ENDBLOCK .
{ Statement } .
BECOMES Variable COMMA Expression [VARSY | CONSTSY]!
CALL Variable ParamList |
IFSY Expression StatSequence
{ ELSIFSY Expression StatSequence }
[ELSESY StatSequence] ENDSY |
FORSY Variable COMMA Expression TOSY Expression
{ BYSY Constant] StatSequence ENDSY |
CASESY Expression
{ OFSY [Element } COLON StatSequence }
[ELSESY StatSequence] ENDSY !
WHILESY Expression StatSequence ENDSY |
REPEATSY StatSequence UNTILSY Expression |
LOOPSY SiatSequence ENDSY |
RETURNSY [LPARENT Expression RPARENT } |
EXITSY |
WITHSY Variable COLON Name StatSequence ENDSY .
SimpleExpr [RelOp SimpleExpr] .
EQL INEQIGRT IGEQILSSILEQ I INSY .
[MINUS } Term { AddOp Term) .
{ PLUS | MINUS | ORSY) [SETCP] .
Factor { MulOp Factor } .
(TIMES [SLASH | DIVSY IMODSY | ANDSY) [SETOP }.
Constant |
[ADDRESSY] Variable [[CastOption] ParamList]
LPARENT Expression RPARENT |
NOTSY Factor .
[FIELD FieldLevel PERIOD] Name
{ LBRACK Expression RBRACK |
PERIOD Name | ARROW } .
Number .
ANYCON TypeStruct .
LPARENT [[VARSY] Expression
{ COMMA [VARSY] Expression }] RPARENT .
Constant .
Number .
INTCON Value |

45

46

47

48

49

50

51 Name=

52

53 CastOption =
54

55

56 Spix=

57 RealConst=
58 RHigh=

5 Rlow=

60 StringConst =
61 Union=

-25-

CARDCON Value |

INTCARCON Value !

CHARCON Value |

REALCON RealConst |

STRINGCON StringConst |

SETCON Value .

[MODULESY Nptr] [Union] (NAMESY | SYMBOLSY)
NptrList .

TYPESY |

RECORDSY |

ARRAYSY.

Pointer in ASC file ,

RHigh RLow .

Value .

Value .

{ Character } *0C" .

RECORDSY Npir Nptr { RECORDSY Nptr Nptr }.

If Spix < 0 then the identifier is internalily generated. Use the two bytes as an identifier name.

The following is a list of terminal and non-terminal symbols, followed by the line numbers on which the
symbol appears. The line number on which the symbol is defined is precided by *-".

F1.2, Non-terminal Symbols

AddOp
Block
CastOption
Character
Constant
Definition
Element
Expression
Factor
FieldLevel
Module
MulOp
Name

Npir
NpirList
Number
ParamL.ist
Procedure
RHigh
RLow
RealConst
RelOp
SimpleExpr
Spix
StatSequence
Statement

28 27
74

53 32

60 -
42 -39 31 15
7 3 2
42 17

41 40 36 33 25 2 20 19 16 14 12 1
38 31 29
38 35

3 2 1
30 29

51 37 35 %
61 51 6 -5
52 6 4 2
43 38

40 32 10
43

.58 57

59 57

.57 48

26 25

27 25

56 S

-9 8

StringConst
Term
TypeStiuct
Union

Unit

Value
Variable

F1.3. Terminal Symbols

ADDRESSY
ANDSY
ANYCON
ARRAYSY
ARROW
BECOMES
BYSY
CALL
CARDCON
CASESY
CHARCON
COLON
COMMA
CONSTSY
DIVSY
ELSESY
ELSIFSY
ENDBLOCK
ENDSY
EOP

EQL
EXITSY
FIELD
FORSY
FROMSY
GEQ

GRT

IFSY

IMPLEMENTATION

INSY
INTCARCON
INTCON
LBRACK
LEQ
LOOPSY
LPARENT
LSS

MINUS
MODSY
MODULESY
NAMESY

-60
-29
-44
61

-1

59
-35

32
30
39
35
37

15
10
45
16
47
24
41

30
18
12

26
23
35
14

26
26
11

26
46
44
36
26
21
40
26
28
30
51
51

49
27
39
51

58
32

17
14

13

33

27

-26 -

50
pr

19

22

47
14

18

46

15

10

45

13

9

44

NEQ
NOTSY
OFSY

ORSY
PERIOD
PLUS
PROCEDURESY
RBRACK
REALCON
RECORDSY
REPEATSY
RETURNSY
RPARENT
SETCON
SETOP
SLASH
STRINGCON
SYMBOLSY
TIMES
TOSY
TYPESY
UNTILSY
VARSY
WHILESY
WITHSY

26
34
17
28
37
28

36
48
61
20
22
41
50
30
30
49
51
30
14
33
20

19
24

35

54

33

28

22

-7

-28 -

APPENDIX G
INSTALLATION DETAILS

G1. PROCEDURE FOR INSTALLING THE MODULA-2 TO C TRANSLATOR

tar.

@
®)

©)
6]
(&)

The source of the Modula-2 translator is distributed on a single file using the UNIX tape archiver utility

To install mod2 do the following:
Unpack the distribution file into some directory.

Edit Makefile to suit your system {fi.e. BIN, LIB, INCLUDE & OWNER - see explanation in
Makefile)

In the ucb universe type ‘make first’
Test the program (this is a bit difficult as the bits are spread over 4 directories),
type ‘make instail’

Notes:

Y

i)

If you are looking for the makefiles, then they either have the name Makefile or makefile, depending
on what is most readable in the particular directory.

There is nothing really universe dependent, except for the support of very long names in both files and
identifiers. However, it was originally written in the ucb universe and has not been extensively tested
in the att universe.

One suggestion is that you first install the system in some local area to test it before inflicting it on the

system. To regenerate the code type ‘make all” (or just make).

The distribution contains a number of directories:

Src - the source to the translator. This contains the following directories:)

sMic - Pass 1-3 of the compiler (written in Modula-2, with equivalent C code).
Modula- the translator for mic’s object code.

» Symbol - the translator for mtc’s symbol table.

e M2C - aprogram to merge the outputs from modula and symbol.

¢Sys - anumber of system routines,

e Utils - a couple of useful programs (including a shell script to compile modula
programs).

Docs - some documentation. Presently rather scarce. It should contain a man page for mod2 (the
shell script in Src/Utils), a copy of a paper for AUUG and documentation from the original
compiler (i.e. from ETH). Read m2c.auug and user.guide first,

Test - some test programs that are known to work (including the equivalent C source).
Pretty.prt - a program to format Modula listings - as yet untested.

Other files are:)

README - this file,

BUGS - alist of known bugs (and possible fixes),

Makefile - a top level make file,

-29.
On distribution any translator sources that are written in Modula-2 should also have the equivalent C
code. ;

During instaliation the translator will make a number of directories if they do not already exist. These
are

$BIN - the place for the programs to go from make install
: (e.g. /usr/bin or fusr/local/bin)
$LIB - where the library for 1d goes
{e.g. fust/lib or fusrflocal/lib)
SINCLUDE - a home for some other subdirectories

(e.g. fusrflib/modula or fust/include/modula)

$INCLUDE/Decl - all the *.decl’ equivalent of the Modula-2 *.def’
are stored here for system modules. Used by cc.

$INCLUDE/sym - symbol files for system modules (*,sym’ from *.def’) Used by mitc.

$INCLUDE/def - the ‘.defs’ used to generate ‘.def’ and ‘.sym’., Mainly for ease of reference
(nothing uses them). ‘

