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ABSTRACT

The mathematical and computational structure of POW3D, a general purpose zero, one, two and three-
dimensional multigroup neutron diffusion code including feedback-free kinetics, is described. The code
serves as a diffusion module for the AUS nuclear code system. During the production of this efficient nuclear
code, a novel mathematical approach was developed to solve the large number of linear equations involved.
A description is given of this technique, the method of implicit non-stationary iteration (MINI), and the way in
which it is implemented in the code. The three-dimensional implementation of several other conventional
approaches to the solution of the linear systems is also discussed.
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1. INTRODUCTION

It is vital in any neutronics calculation scheme to have a versatile, fast and accurate multi-dimensional,
multigroup diffusion code. The first codes used at Lucas Heights were CRAM (Hassitt [1962], rewritten in
FORTRAN, but originally for the 1BM7040) and GOG (Hopkins and Oakes [1968], much of which was
rewritten for the IBM360/50). There were a number of other suitable nuclear codes around the world but
many of them were not readily available for distribution. Local experience with CRAM and GOG indicated
that CRAM was versatile but insufficiently fast, whereas GOG was fast but lacked versatility. In addition,
obvious shoricomings of both were revealed for some calculations. With the development of the AAEC's
AUS modular scheme [Robinson 1975] a versatile, fast and accurate two-dimensional multigroup diffusion
code was required as a ‘workhorse’; this led to the module POW [Pollard 1974].

In some aspects POW was a radical break trom the earlier codes. One essential ditference was that it
made a better estimate of leakage throughout the reactor compared with other codes because it used an
edge flux scheme [Wachspress 1966). POW used successive line over relaxation (SLOR) to solve the
sparse linear system, and Chebyshev extrapolation for the eigenvalue calculation. The code differed from
other codes in its ability to obtain extrapolation parameters for both schemes from a detailed analysis of the
neutron flux calculated, using pre-optimum eslimates of the parameters In addition, both group and region
rebalance were carried oul to enhance convergence.

POW was designed to function efficiently on an 1BM360/50 computer with 512 kilobyles of memory. As
computer speeds increased and the cost of primary memory reduced, it became possible 1o consider the
third spatial dimension in reactor models. It is not efficient, however, simply to alter an old two-dimensional
code for studies of the third dimension. It is necessary to consider advances in mathematical techniques and
computer archilecture.

POWS3D employs the novel method of implicit non-stationary iteration [MINI; Barry and Pollard 1977,
1978] to solve the large sparse linear systems of equations that arise at the heart of any multi-dimensional
neutron diffusion calculation. MIN} is the standard option for POW3D; however, for comparative studies or
for other special functions, POW3D also supports a three-dimensional extension of the SLOR scheme from
POW and ICCG the refined conjugate gradient method of Meijerink and van der Vorst [1977].

Although, like POW, POW3D may be thought of as a ‘workhorse’ code it also has been used as a
research tool. During implementation of this work, the three iterative techniques were evaluated on three-
dimensional problems before the decision was taken to make MINI the default option. Details of these
studies are reported [Barry and Pollard 1977, 1978, 1981; Barry 1882). Norma! region and group rebalance
in POW3D are based on three-dimensions. Testing of extensions 1o the normal rebalance techniques based
on two-dimensions indicated that a three-dimensional implementation was not worthwhile. The extensions
have been retained as a special option in POW3D should further research seem inviting.

POW3D was developed on an IBM380/65 computer, but the eventual host was expected to be an IBM370
with a virtual operating system. Careful design of the data structure for any three-dimensional model is
essential and special consideration must be given to dramatic changes in computer memory architecture.
The code was required to function efficiently in both the real and the virtual worlds so a special data handier
was developed [Pollard, unpublished).

The original source language of POW3D was mainly FORTRAN IV, although the direct access
input/output (I/0) handlers were written in Assembler language [Cawley 1976]. Several key mathematical
subroutines also were written in Assembler language [Cox 1976] but FORTRAN |V versions were available.
Since 1990 FORTRAN 77 moduies are used exclusively to enable porting of the code 1o different platforms.
With improvements in FORTRAN compilers and hardware performance, the need for specially coded key
routines is reduced.
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The program may be run alone as well as under the AUS system in as little as 8 Megabytes of real
memory; however, large three-dimensional problems require much more storage. A dynamic storage
systern [Cox 1971] was used to overcome the fixed array dimension weakness of FORTRAN. In porting the
code to UNIX platforms this is replaced with a C routine cali to ‘malloc’ [Robinson unpublished].

POW3D has all but replaced POW as the AAEC’s neutron diffusion code, even for two-dimensional
studies. For the latter, POW3D is significantly faster than POW owing to the mathematical enhancements
and the reconstruction of other important computational sections of code. For zero and one-dimensional
studies with many energy groups, the more general data structures of POW3D are not as effective as the
simpler POW structures.

From a code user's point of view, ease of use is exiremely important. POW and POW3D both employ
free input routines 1o assist in data preparation; indeed, the actual input to POW can usually run unchanged
in POW3D. As well as calculating neutron fluxes, each code can prepare its own 2-region (equivalent)
resonance shielded cross sections from AUS data pools (libraries), although this feature is no longer used as
the cross sections may also be obtained from libraries processed by other AUS modules [Robinson 1975].
Details are given in the POW3D User's Guide [Barry et al,, forthcoming]. The codes also have reasonably
general editing facilities including perturbation options. In addition, one- and two-dimensionali graphical plots
of flux v. reaction rate may be produced. POW3D is designed to make the transition to the third dimension
as simple as possible for the POW user. :

Finally, POW3D can be used for multi-dimensional kinetic studies for systems perturbed from the steady
state with a prescribed pulsed (feedback-iree) variation of some usually physical parameter, for example the
concentration of a reactor material.

2. NEUTRON DIFFUSION EQUATIONS
2.1 Time-dependent Multigroup Neutron Diffusion Equations

POW3D was designed 1o undertake static (steady-state) calculations in up to three spatial dimensions,
and time-dependent (kinetic) studies with a limited amount of feedback. Until now, however, most of the
work with the code has been direcied to steady-state studies.

The time-dependent neutron diffusion equations are

- 2 g et) = - V. DaglL) VI + Gl L) 8L )
g

= Zog(r 1) oglLt)
- To(1B) T 1c O L1) O L)

= T ha Cal L) = SefL), @=12..0) (2.1.1)

and those for the delayed neutron precursor concentrations are

% Colr 1) = ﬁd%'v':
where k is the effective steady-state multipiication, which has been determined in a criticality calculation (left
hand side of equations 2.1.1 and 2.1.2 replaced with zero as is the source term Sg): ¢y( L 1) is the neutron
flux for energy group g and is calculated in all studies; Cq4(L.1) is the precursor concentration density for the
d" delayed group, which is calculated as an intermediate stage in obtaining ¢, r.t); v, is the average
velocity for energy group g; D,g(r.t) denotes possibly (tensor) directional diffusion coefficients (for
directions n or —n parallel to the chosen axes), atthough the isotropic value Dg{rt) =1/(30,(r.t)) is usually

used. To avoid confusion with summation, the practice of representing all macroscopic cross sections by ¢

o{rt)olr.t) - A Colrt), (@=12,..0D), (2.1.2)



is used throughout;

og( .t} denotes various (macroscopic) cross sections:

Cgy = scatlering cross section (matrix) from groups g"to g,
Oy = removal cross section from group g,

= Cag + g:}.:.g Og (@bsorption + outscatier from group g) — the self scatter.lerm g is set

to zero,
Gy = fission cross section for group g,
VG, = the fission emission for group g

(note that o, and voy, are not matrix quantities);

Xpg 1S the prompt fission spectrum for neutrons emitted in energy group g (normalised to a unit group sumj;
Xqp IS the delayed fission spectrum for neutrons emitted with energy g (normalised to a unit group sum) for
the delayed group d; By is the fraction of all fission neutrons emitted in delayed group d, note B (= }&“.Bd);

S, 1.} is the source strength in group g of an exiernal source located at a point r of the reactor; tis the time;
and A4 is the time constant for the delayed group decay. The summations are taken over all groups (g =
1,2,...G;d=12,..D).

The equations are solved subject to the following conditions:
(i) The outer boundary conditions for
(a) reflective (zero current), frequently used when reactor symmetry is applicable —
n.Vaog(rt) =20, (2.1.3)
where n denotes the outward pointing normal, or
(b) zero fiux at the extrapolated boundary —
dn. Vo (rt)+ao,(rt) =0, (2.1.4)

where d is the extrapolation distance, that is, the distance outside the medium at which the flux
would vanish, and is sometimes taken to be 2/(3c,), where o, is the macroscopic transport cross
section, although more rigorous theory leads to d = 0.71/cy,.

(i) The internal boundary conditions for the material interfaces which are assumed to lie parallei to the
axes. For left and right hand boundaries these are

(a) the continuity of flux ~--
Ogl L) |L = ¢g(L.1)) o foreachgroup g, and {(2.1.5}
(b) continuity of current —
(Dng{L,t) 0. V(L 1)l L~ Dag(L.t) n.Vag(r.1)| Q=0 (2.1.6)
for each group g, where n is normal to the boundary.
(iiiy The initial conditions; the reactor may be operating at a steady-state power level or starting from a

shutdown position:

(a) Steady-state condilions —
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%¢9(£,t)=o, %Ca(;,t)w. Sy(r1)=0, <0 for all groups,

Z [ f(£.0) o15(£.0) o(£.0) oL = P(O).

where f{ r t) is the energy released from each fission of the material about r and P(0) is the required
power level at time zero {the start of the study). To satisfy this condition, an eigenvalue problem (/.e.
the steady state form of equation 2.1.1) is solved to obtain the group fluxes ¢,. The steady-state
eigenvector is normalised to produce the appropriate power level P(0).

{b) Shutdown conditions —
oo(Lt)=0, Cu(rt)=0, Sr,t)=0, t<0 foraligroups.
2.2 Steady-state Neutron Diffusion Equations

As well as solving the time-dependent equations 2.1.1 and 2.1.2, POW3D is designed o solve other
probiems, including the steady-state eigenvalue (or criticality) problem either in its own right, or as the first
stage of a kinetics calculation. The steady-state eigenvalue problem is

~ V. Digl£) V 461} + 65 1) (1) — E 0y (1) (2.1.7)

=X 93 -E- Ol 1) &gl L), (9=1.2,...G) ,

where xg = Xpg(1 - B) + § %dg Be- The eigenvalue (1/) is introduced to allow non-trivial (i.e. non-zero)

solutions. The existence of a non-trivial solution corresponds to a critical physical assembly for k=1. A non-
trivial solution can be imposed by artificially adjusting the number of neutrons produced in the fission process
through the introduction of a positive real number 1/, where k corresponds to the multiplication factor of the
assembly.

POWS3D also handles steady-state source problems of the form
= V. Dn{L) Vag(r) + oglL)dg(L) - ﬁ:,cgg» dg(r) (2.1.8)

=xa§\'0fg-(£)¢gf(u +S,(1), (g=12,...0),

where a multiplicative factor k is no longer required. The adjoint flux is of considerable assistance when
undertaking periurbation studies of reactor systems. The adjoint equivalent to the eigenvalue equation 2,1.8
is

—V . DpglL) Vog(r) + ag{ L) 9 (L) - 3‘3,09- og( 1) (2.1.9)

=o-fg§xg‘%¢g-'(£)r (g=1!2""lG) 1

whereas that of the source problem is
—V . Dngl L)V og(r) + Sl L) bg(F) - Z o5y Ol L) (2.1.10)

=Gf9§‘x¢v¢£'(£) + 8,(r), (9=12...6).

The multigroup diffusion equations 2.1.7 and 2.1.8 are not self-adjoint owing to the scatiering and fission
production cross sections. However, the diffusion and removal terms constitute a symmelric system. In
addition, the code can perform three types of criticality search, where physical attributes are adjusted by a
multiplicative parameter to achieve a required effective multiplication k = Kequires. USUally 1. Although three
types of search facilities are supplied with POW3D, advanced users may specify their own requirements by
writing special subroutines which are inlerfaced easily wilh the code.
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3, DISCRETISATION OF THE DIFFERENTIAL EQUATIONS
3.1 Temporal Integration of the Time-dependent Neutron Diffusion Equation

Experience with neutron diffusion calculations has shown that discretisations performed by finite
differance methods lead to sets of equations that are amenable to numerical solution. The temporal method
is essentially based on a routine designed by Pollard [1973] for the two-dimensional code POW. The method
(appendix A) uses the direct space-time integration theory proposed by Stacey [1969] and includes the
precursor concentration in a natural way. '

3.2 Spatial Integration of the Neutron Diffusion Equation

The finite difference discretisation for a particular energy group of the 3D diffusion equation given in
appendix B follows the basic concept of Wachspress [1966]. POWS3D handles an {x,y,z) geometry system
for three spatial dimensions, however (r,z) geometry is supporied in two dimensions as well. It is normal for
the reactor design to be oriented so that structural variation is minimal in the (2) direction; this is
accommodated in the code. To avoid YO overhead penalities, users of the code should construct similar
models. Internal material boundaries must be associated with the resulting grid, so that internal boundary
conditions may be satisfied. Partial integration of the diffusion equation 2.1.1 is carried out over integration
boxes surrounding each grid point. Details are presented in appendix B. '

With the fine detaiis as given in appendices A and B, the discrete form ot the multigroup time-dependent
diffusion equation 2.1.1 is

1 2 3
o@ip oPkp + o8 ikp o®itikp T o iikp adikakp
4 6 7
+9ailk';p, e T 0B ikp oDipap T 9Bk o®ip-1:p
5 - I
+{ g8ijkzp + %[Grg(ml!tp) + 21{vg 51)]"1»; Y oup

- v .
. % % [cgg'(mhtp) + X,(mg (Bt)IU'n' (mhtp):lV:]k g-q)ljk:p
- al. az - a3..
o8k oPijrikp-1 ~ 92 ijkip o%ict jip1 o ik 9Pij1 kip-1

4 6 7
" o@p P jkp-t 08 tkp gPiperip-1 o2 likp gPijk-1:p1

“{q alsjk;p + zil[crg(mll-t.p) - 2/{vy 5‘)]":]1( } gk pr
‘ + % % [099'(”113:!) + Xmg (&)"\:"0,9'(“1:513)]"'1& g'¢ljk;p—!

"‘2%ng Mg Golhg ) oCipcpm + gsllk(ip) ,

and for equation 3.1.2 is

. v -
6Cikp = ¢Cupr €% + Byt 3 51“ ?0,9'(”1;39)\’:“ X (3.2.2)
g

X [Fy(-2g 8t) g @ jjpr + F2(-Aa ) g O]
4. NUMERICAL SOLUTION OF THE NEUTRON DIFFUSION EQUATIONS
4.1 Problems Solved by POW3D

Several numerical computations are possible with POW3D; they may be classified info five basic
categories:

{i) solution of the steady-state eigenvalue equation;



-6-

(i) solution of the adjoint steady-state eigenvalue equation;

(iii) solution of the time-dependent equation;

{iv) solution of the steady-state neutron source equation; and

V) solution of the adjoint steady-state neutron source equation.
4.2 Eigenvalue Problems '

Apanrt from being important in its own right, the eigenvalue problem is the first step in a kinetics study.
Here it is necessary to perform a steady-state eigenvalue calculation to determine the multiplicative factor for
the assembly. The steady-state form of the eigenvalue problem can be expressed in matrix operator terms
as

Mo = -:(—Fg; , (4.2.1)

where M ¢ is a finite difference approximation {obtained, as indicated in appendix B, for the left hand side of
equation 2.1.7):

-V. Dng(.[) v ¢g(£) + Ol L) ¢g(£) - E;‘cgg'(L) ¢g'(£) , and
F¢ is the equivalent approximation for the right hand side (without the 1/k factor):
Xo ;‘3 vou (1) ¢,01)  {9=12...G.9 =12,..6).

In more detailed form, equation 4.2.1 is

pu— ity g— 1
‘V.D-‘V + O'n '512 "013 ‘s Q 1
Coq - VDzV + G2 O [}
=Cay —O32 -V.D3V + O
L—- -"-. _g G—
— r T
X1VOiy X1VOyy XiVOis i 1
2
_1 X2Von X2VOp2 X2VO13
k X3VOy X3VOi2 X3VOi3
L . - . e Q G

(4.2.2)
For the compilete matrix M of equation 4.2.2,
o = oj (=},

consequently there is no symmetry relation equivalent 1o that for any diagonal component of equation 4.2.2.
Row diagonal dominance

m; 2 X Fm |
J*I

no longer applies. The matrix, however, is diagonally dominant by column:



myg 2 X |Iml
Jmi

Each of the diagonal matrix components of M are sparse, real, irreducible, symmetric, positive definite
(.. Stieltjes) block tridiagonal matrices with elemenis

m i = m Jir (i = 1,2,...,N; ] = 1,2,...,N) ,
mij < 0 i#’ .
m; 2 Eilmﬁl '

whereas the source terms on the right are non-negative (and not ail zero).

Birkhoff and Varga [1958] demonstrated the existence and uniqueness of a positive solution for equation
4.2.1, with a comesponding real eigenvalue greater in modulus than all other eigenvalues of the matrix
equation, by application of the Perron-Frobenius theory of non-negative matrices. Solution of the eigenvalue
matrix equations involves the determination of only the largest modulus eigenvalue and its corresponding
eigenvector. The simplest approach is the power method [Wachspress 1966}, where

1
n+1) — o -1 {n)
Q k(n) M F Q ¥
1 1 <w MTFs>
k(n-H) - k(n) <W ,M -1 F Q(n+1) -

and <,> denotes inner product and w is an arbitrary weighting vector.

The rate of convergence is determined by the dominance ratio |k} /[kq}, the ratio of the two largest moduli
eigenvalues. It is slow for most problems, and notoriously slow for those with a high dominance ratio. For
large reactors, this is typically of the order of 0.95 or larger. Although fast reactors are more compact and
have lower dominance ratios [Ferguson and Derstine 1977], even these may be as high as 0.8. Because
convergence is slow, it is accelerated by Chebyshev extrapolation. In practice, it is more attractive 1o
extrapolate neutron sources rather than the flux. In POW3D, the approach is similar to that adopted in POW,
where weighted averages of three earlier fission sources are used [Pollard 1973].

Determination of the largest eigenvalue requires repeated calculation of
M- F ™Y (4.2.3)
4.3 Time-dependent and Source Problems
Time-dependent and source problems require solution of the matrix eguation
Ag =35
For the kinetics problem s collects all the quantities Q:P_l and G, from the previous time step, as well as
any external source. Solution of both the time-dependant and steady-state fluxes requires the calculation of
Als . (4.3.1)
4.4 Matrix Sclution

Of course, M~! or A™' are never computed, and iterative techniques normally are used to solve the linear
systems of equations. The symmetry and row diagonal dominance of M is lost for the muitigroup torm but
column diagonal dominance remains. Consequently, until now the Gauss-Seidel (GS) technique has been
the standard iterative sotution method for the outer energy group block of equation 4.2.2.

Equation 4.2.2 is solved by block techniques. Fortunately, however, more advanced techniques are
available for the inner blocks. The new ilerative technique MINI does not require symmetry and provides an
appropriate and novel approach for hastening convergence of the outer block.
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The matrix A for source and time-dependent problems also lacks symmetry, however, the same
conclusions for MINI apply. In addition, it is not always possible to guarantee that for the time-dependent
equation the matrix is even column dominant. Fortunately, practical studies have shown that there are no
problems in obtaining converged results for stable configurations.

5. OVERVIEW OF POW3D COMPUTATIONAL STRUCTURE

The schematic representation of POW3D embodies concepts of programming and mathematics, to give
an overrall flow of logic. Not all the concepts have been explained; this will be done in sections (MINI,
sections 6 and 7; ICCG, sectlons 6 and 7; energy groups and region rebalance, section 8). Some of
these concepts, such as the calculation of source components, look remarkably simple. This is misleading
since quite large time savings were obtained by reworking that pant of the code. These subroutines were
worked over so often that it is no longer possible to recognise the original physical intent of the caiculation
from the code. This leads to the dilemma of choosing between a highly efficient code at run time, or a set of
well-structured, self-documenting and understandable instructions. Computer scientists [Dahl et al. 1972)
would emphatically favour the latter; however, the former philosophy is chosen for all the important sections
of POW3D because the time savings are so enormous that the range of problems handled by POW3D is
greatly enhanced.

A logic summary of POW3D follows, but some details are simplified and others omitted:

procedure main
t=t°
calculate t,, cross sections and coefficient matrix

if Kinetics calc. then Rg=rthseqn3.2.1forg=1.2..G
if sourcecalc.  then R, = externalsourceforg=1.2...G
elseR g =0forg= 1,2,...G

generatetrial fluxes ¢, 0=1.2,...G

Xg = xpg(1-l3)+§xdgl3d

calculate fission production F=3 %om. 9,

1
if eigenvalue calc. then renormalise fluxes to given power level
if not kinetics then p=0

P
loop kinetics from1top (=1, + }:1 dtp)
p=

loop outer = 1 to maximum outers
calculate number of upscatter passes (upmax)

*** POSSIBLE GLOBAL COARSE MESH SOLUTION OF OQUTER CALCULATION ***

if global group-space rebalance
then begin collapse_
b &g Mgy « Mg
§ « s5.9=12.., G; g=1.2,..G

1,
call INNER (M, ¢, §, upmax,coarse mesh)
end

*** FINE MESH CALCULATION OF QUTER CALCULATION ***



CALL INNER (M, ¢, s , upmaxfine mesh)
if kinetics then xg = 2)5(5t }
elseyy = X.pgu B) + E Xdg By

calculate fission production E=1% 2o to 8o
if gigenvalue calc. then caicuiatek  © ¢
if converged then finish for eigenvalue and source calcs.
if search and partial convergence then begin adjust parameters
calculate necessary matrix terms
end
extrapolate E with Chebyshev method
if eigenvalue calc. then renormalise ¢ ;9 = 1 2,...,G
end loop outer
update precursor concentration
1=t+ 5t
adjust parameters for kinetics variations
recompute necessary coefficient matrix terms

end loop kinetics -
procedure INNER (M, ¢ , 8, upmax , mesh)
loop 1, from 1 to upmax
g1=1- g!=Gl Ag = 1
if L2l then g1=Qyp (first group with upscatter into it)
if adjoint then g4 =G, g;=1, 4g = -1
loopirom g = g4 to gy, St€p Ag
if (9=g,and l,p=1 and convergence ditficult, mesh fine)
then apply energy rebalance ¢4+ 9'= 1.2,...G

if MINI SOURCE then s, =Rg+x,F+ 3 o9

; 9 (shown only for eigenvalue problem)
=)

else sg=Rg+1, E+ .):g Oyg & o (GS source)
Q-

if {convergence difficult and method = SLOR and mesh fine)
then region rebalance ¢ ¢
if (convergence difficult and method = SLOR with o determined and mesh fine)
thenregion rebalance ¢ ¢
if coarse mesh option
then if disjunctive partitioning and region balance weighting
then solve Mg ¢ 4 = 8 ¢ by MINI
else solve My ¢ ;= § 4 by direct means
if {tine mesh option)
thensolve Mg ¢ o= 8 o by SLOR, MINI or ICCG, or combinations of same
end loop g

end loop |,

end procedure INNER



-10 -

6. ITERATIVE SOLUTION OF LINEAR EQUATIONS IN POW3D

6.1 Introduction
Three iterative technigues,
(i) MINI,
(i) SLOR, and
(i) Conjugate gradient,

are available within POWS3D 1o solve the large system of sparse linear equations at the heant of the code.
The authors believe MINI to be the most suitable and have made this the default option for the code. The
SLOR method is well known [Young 1971] and is treated no further other than to consider the appropriate
data handling.

When the code POW3D was planned, there was a need for a more efficient iterative technique than
SLOR. Although it is a robust and mathematically well-established method, something better was sought
since the third dimension was included. MINI was devised and tested in a two-dimensional mode [Barry and
Pollard 1977] and the promise it showed encouraged its implementation in three dimensions. This promise
has been more than fulfited for 1est and real world reactor probiems in both two and three spatial
dimensions. !t also gave an unexpected bonus by providing an alternative to the Gauss-Siedel (GS) method
for accelerating convergence in energy.

6.2 MINI

Details of MINI are given by [Barry and Pollard 1977, 1978, 1981)], however, only its implementation in a
three-dimensional code is discussed here. The method was prompted by a novel concept for making an
algorithm more implicit [Noble 1975]. MINI applies this concept 10 solving systems of linear equations.
Essentially, it takes the unknowns at any slage of the GS method that are not updated and writes them
implicitly in terms of the updated diagonal term.

The method was developed and refined with an experimental approach. lts final form was greatly
influenced by discoveries resuiting from the use of computer graphics to investigate various formulations of
implicit schemes. A general proof for its convergence has yel to be established, although there is a proof for
a restricted set of circumstances. Absence of the prooi, although disappointing from a mathematical
viewpoint, is not unusual in numerical computations. Experience indicates that it has always converged tor
any system of equations for which GS is an appropriate method.

6.3 Multi-dimensional MINI

Although MINI can be used in a point form, it is much more effective when used as a block technigue (as
it is in POW3D). The generalised MINI block approach is now given for the linear systems arising from
various neutron diffusion equations, written in the form

N
¥ ajjx;=b; (i=12..,N). (6.3.1)
j=1
A block solution process is used for non-overlapping ordered partitions m = 1,2,...,M. If M=N, the block
process degenerates to a point method. For example, m=1 might dencte an x-line on which (y,z) is fixed,
and m=2 its immediate neighbouring line. Alternatively, it may denole an (x,y} plane, or a particular energy
group. In POW3D, MINI works as a block system that is three levels deep. An energy layer contains an
(x.y,z) layer which, in tum, contains an (x,y} layer which finalty contains an (x) or (y} layer. In defaull, the
final choice of layer is made by POW3D which selects the most detailed of the (x) and (y) directions as the
inner one,

The foliowing sets of indices are introduced for a pariat stage of iteration pass n through equation 6.3.1:

Jm  is the set of indices j for elements x ; to be updated together as a block,
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Jr. s the set of indices j for elements x ;, that have been updated,
g = J, U U - U,

and J3, isthe setof indices j for elements x ;, that have not been updated,
Jl:‘l = Jm+1 U Jm+2 U U ‘JM'
In this notation, the basic block GS iteration process may be written as
Jm a',ij(n)-I-Jm aijx]("’ +J,-+n a”xj(“'“=bi (6.3.2)
itdn, m=1.2,..M,
where the J's used in equatlon 6.3.2 also denote partial summation over the index j (for example, Jq = % R
JEdm
The MINI approach for hastening convergence of the basic process given by equation 6.3.2, seeks {0
use a better estimate for the last term Ji, a ;; x ;™" on the left hand side. The estimate would be better if the

components x ; ™ were replaced by those of the iterative pass x ™, In MINI, the unknown current pass
term x ; ", is replaced by the diagonally coupled term

X ](n‘” +y 1(;1) (x i‘n) _— i(n‘"”),

where yi‘j”) are extrapolating parameters yet to be determined. If they are known the GS process is
transformed by MINI to

Imai X + (hayiMx® (6.3.3)
= bi~dnayxfM-dha; -y Pxy,

iedy mMm=12,..M.

The block of equations 6.3.3 for the set J,, may be solved by

(Y adirect method,

(iy  afurther iterative process, or

(i) even recursive or repeated use of the MINI process.
Method (iii) is the standard option available in POW3D.

The determination of v needs to be undertaken. The problems of interest in neutron diffusion studies
have positive solutions x ;.. The MINI iterative process requires that even intermediate solutions x i~ be
positive. As a step iowards ensuring positive solutions, the right hand side of equation 6.3.3 should be
positive. This is achieved by applying the following stringent but not absolutely necessary conditions to the

extrapolating parameters:
0= 'Yl(Jn) < X J‘")/x i(l"l) R (634)

To assume positive solutions for x ™, j € Jp, the block malrix of coetficients with elements on the left hand
side of equation 6.3.3

aik“'(JrTnaij’Yi(?))aik- i€dm, kedn
Whel’eﬁik = 1Hi=k
0 otherwise,

must not contain excessively large vy 's. Although somewhat restrictive, let g., be an upper ¥y limit for the ni"
block, provided that
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?i‘jn ) < Om
the block matrix of coefficients, will yield positive solutions. When the results are collected, the overall
restriction is
0y <o .
where
oM = min (g, x {7/ ()
A prefiminary calculation of the block y limits (gm) could be carried out, or g, could be lowered empirically
it there were negative solutions; however, here we use
On=1. (6.3.5)

This limit is used throughout the calculations, even though occasional negative intermediate solutions may be
found for non-symmetric matrices. Of course, it is necessary for the process to converge; the restrictions to
maintain posttive intermediate solutions are only part of the overall restrictions. Condition 6.3.5 then

becomes desirable.

The working equations for the extrapolating parameters [Barry and Pollard 1877, 1978] are derived by
assuming that they vary slowly between iterations, /.e.
i =y
The parameters are given by
TP tyPsgff

m =
Yil g otherwise

where

1808 o it 1518 (V<1
|88 | otherwise , (6.3.6)
and 8 J‘(n) =X j(n) -X j‘n—”.

In this case, v i(j‘” is obtained either from the last overall pass through the current layer, or it is taken to be
zero (a GS iteration). The expolating parameters are not stored, but rather & " is saved after each iterative
pass for use in the next round with equation 6.3.6.

v i‘;m

For the purposes of computation,-an additional rule is introduced to stop the right hand side from
becoming zero in certain instances when

v = x iy (o

A slightly smaller value is required by the inequality 6.3.4, so
g = min (g,,,0.99998 x P

6.4 MINI for the Inner Two Layers

Implementation of MINI within POW3D is now presented for the inner two layers. The presentation is
given in terms of a physical interpretation of the neutron diffusion equation. Finile difference representations
are based on those given in appendices A and B, however, some variations will soon become apparent.
Allernatively, the MINI implementation could be discussed in the general matrix form of section 6.3, appiied
directly to the finite difference equations of appendices A and B; however, the physical approach is more
enlightening.

Neo matter which neutron diffusion problem is studied, the linear system of finite diference equations
arising from any spatial discretisation may be considered to have the general form
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where o, denotes all the non-leakage (or removal) terms and s, denotes the scattering and fission
contributions based on previous estimates of the flux and any other neutron source. The solution process for
the spatial dimensions iterates through the 'layers’ as follows:

{0 z-direction ‘between (x,y) plane’ inners for the m"™ pass;
(ii) '(x.y) plane’ inners for the n'" pass (and m™ between plane pass); and
(i) x line direction solution (n,m). (Solved with a direct method.)

For ease of presentation, consider D 1o be constant, as is the mesh width h,. If group dependence is
dropped, the numerical approximation for ieakage in the y direction becomes

- "a'a')'; D% = Cyl~0;14+20j-0;.4) ,

where Cy = D/h yz and ¢ 4, ¢ ; ¢ j44 are successive values of flux along a line in the y direction. As the
iteration proceeds in this direction, the flux ¢ ;,, is not available for the present pass n. In the normal
approach, the approximation for the y-direction leakage is

- (nn-1)
- _i _a_d}_ - — & fnm) {nm) _ ,(n-1.m)]

in which emphasis is given, on the left, to the appearance of the fluxes from the two iterations n-1 and n. The
usual MINI approximation

0 0 = ¢ f7m 4y rtm) [¢j(n.m)_¢j(n—1.m)] ’

is used and a better leakage approximation

{n,n) {n,n=1)
_{_a_ 5 a_¢] -2, @g} N
ay o |m Yy Y |m

- Cy -Y’('n-‘i.m) (¢(n.m) ~ ¢(n—1.m) )
is obtained, where the subscript j, denoting the particular line for v and ¢, has been omitted. Similarly

{m {m
_| 8 pot ~ -| 2 poe ~
0z oz 82 92 | mmeny

{m,m)

- CZ 'Y(--m"“ (¢(n-m) — ¢(..m-1))

where the notation (.,m-1) denotes results obtained from converged fluxes of the previous z pass. (The
diagonal leakage term always remains implicit as ¢™™) When the above results are collected, the
approximation for equation 6.4.1 becomes

I PO e
n)
i P_ 5 _BB;Q_J L
9z % 9Z | mm-1)
“[%0=Creto ™ - Cx vz‘a""”} o4™™
= 59‘[ Cygvyg ™ g™ ™ + Cp ¥5™ Y ¢é"'"'”} : (6.4.2)

which is also the result for a general mesh with appropriate changes to C,; and C;;. Equation 6.4.2 is
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similar to the normal approximations, except for the reduced removal terms and the compensating terms on
the right.

Like SLOR, the MINI approach (equation 6.4.2) is an extrapolation of the basic GS method (v = 0).
Either MINI or SLOR {or for that matter GS) may be used for a particular direction. This enables a
combined approach using the three methods for the whole reactor caiculation. When SLOR is used for the
(x.y) plane and MINI is used between planes (2), the diagonal terms in the SLOR matrix will alter because of
the changing removal term (equation 6.4.2). Ideally, the optimum SLOR relaxation parameters should be
continually re-determined, necessitating computational overhead, however, in the POW3D implementation
they are assumed to be insensttive 10 such changes. (This is rather questionable but SLOR-MINI was never
considered as a suitable option even though it was easily implemented in the code.)

6.5 Conjugate Gradient Method
The linear system of equations
Ax =b

is once more considered to correspond 1o a one-energy subsystem of equation 4.2.2. The matrix is
symmetric, irreducible, has positive diagonal elements with negative or zero off-diagonal elements, and is
both row and column dominant. The conventional conjugate gradient method-for solving Ax = b is greatly
improved through an incomplete Choleski refinement [Meijerink and van der Vorst 1877]. The incomplete
Choleski conjugate gradient (ICCG) method involves an approximate factoring of

A= LDLT ,

where L is a lower triangular matrix retaining the sparseness of A, and D is a diagonal matrix. The evaluation
of elements in L and D is defined by equation 6.5.2. Once the approximate LDLT decomposition is

complete, the algorithm is as follows
Select x , as an initial approximation to x,
o = p. - AE o

(LDL 1,

o; = <r DL > /<AL

X i
Tisy = b-Axj,qorri-ajAt; ,
Bi= <fisn{DLN i >/<r;, DL 1> | and

tiss = (LDLTY " rip +Biti (6.5.1)

Computation of the residual r;, , may be performed more economically in the form

Fie1 = Li—a AL,

Reid [1971] has advocated that this is the preferred way for computing the residual. The longer form
Livi = b—-AXi,,

is used in POW3D because large errors in the initial estimate for x may cause roundoff errors 1o swamp
iterative corrections to r,,, based on r;,, We have found that false convergence occurs when the initial
estimates involve significant error, With the use of single precision arithmetic to resoive the intermediate
stages of the conjugate gradient algorithm and, at times, great uncertainty in estimates for the magnitude of
the trial fluxes, the choice appears desirable.

In POW3D, the approximate (LDLT) decomposition follows the traditional Choleski approach, whereby L
and D are computed by
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=1
Ly=ay=ZTladuly . (6.5.2)

except L =01f a; =0,
dii=1”'ii

The non-zero infill for L not only allows it to retain the original sparseness ot A but an uhexpected
computational bonus is received. For the five or seven point finite difference operators used for the two and
three-dimensional difiusion codes, the elements of L are those of the original matrix A. This result is

established in appendix C.

7. COMPUTATIONAL IMPLEMENTATION OF ITERATIVE TECHNIQUES
7.1 Introduction

All to often, once a numerical technique has been formulated in mathematical terms, there is a lendency
io dismiss the computational implementaticn as a trivial exercise. This is unfortunate because what
appears most efficient from a straight mathematical viewpoint may not be so when limitations of computer
capacity and function are considered. The storage required for neutron diffusion calculations is large; even
the largest machine at the time when POWS3D development was commenced did not have sufficient
primary storage 1o hold all matrix coefficients and unknowns. Nor at the time was it realistic to anticipate
any change in the immediate future, because reactor designers would attempt 1o incorporate more deiails in
their existing models as computer facilities increased. Consequently, similar consideration must be given to
adequate data structures and I/O handling as was given to the mathematical study of convergence.

The development of POW3D coincided with a major change in the IBM memory architecture. The code
was designed to function efficiently in both memory environments. The form in which a technigue is best
implemented for a particular problem on & computer may appear at first glance quite different to that of the
original mathematical definition. Such is the case for MINI and ICCG. We believe that implementation of the
numerical techniques belongs to the discipline of mathematics. Accordingly, the ways in which MINI and
ICCG function within POW3D are discussed in detail. The implementation of three-dimensional SLOR has
many features in common with MINI, particularly in the data structures for the third dimension.
Consequently, its implementation is not discussed further.

The philosophy of POWS3D is based on the assumption that for any energy group, sufficient memory is
available for a complete two-dimensional model, and for a two-dimensional subsection of a three-
dimensional model. This was a practical assumption in view of then scientific computers. It was only in the
third spatial dimension (and energy) that secondary data transfer is necessary. Arrays suitably dimensioned
to hold the two-dimensional forms in POW3D were generated dynamically under the VARRAY system [Cox
and Pollard 1978]. Under UNIX this is replaced with a C routine call to ‘malioc’ [Robinson unpubiished].
This overcomes a weakness of FORTRAN requiring storage to be allocated explicitly. Should sufficient
primary space within the requested region be unavailable 1o accommodate a two-dimensional section of the
user's model, the calculation is terminated. The user may request a larger region or simplify the model.

At first sight, the availability of virtual storage systems appears 1o take responsibility for handiing data
transfers and the management of storage away from the scientific programmer. Blind acceptance of virtual
storage presents problems because such systems are not universal. This affects the portability of any code
which relies upon them exclusively. Limitations in the address range may present problems for complex
reactor calculations, particularly when the number of energy groups modelled is large. (Development of
POW3SD commenced when the limit for the IBM system was eight megabyles without the use of extended
architecture.)  In addition, it is probably best for the user to organise data transfers personally. This is
particularly so when the most efficient type of organisation is known in advance. The alternative is 10 rely
on a more general paging algorithm which in some cases, exchanges data in an inappropriate fashion.
These algorithms relain the most recently used pages and swap out the others. Frequently it is the page
that was dispatched 1o the disk (because it was used some time ago)} which is required next in iterative
approaches rather than the page just used (and still in memory).
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When initial planning for POW3D commenced, the AAEC operated an IBM360/65 computer with two
megabytes of primary storage. it was known that this machine would not be replaced by an IBM3031 (with
vitual facilities) for at least three years. Before then it was anticipated that a significant proportion of the
code would be operational. It was this knowledge, plus the desire fo maintain a code with some portability to
non-IBM compatible instaliations which greatly influenced the data structures chosen. To achieve this, the
code had o run without relying on virtual memory. It was decided, however, not to ignore the potential of the
virtual systems for later generation computers, particularly as this would be the environment in which
POW3D would earn its keep. A method that attempts to exploit the best of the real and virtual worlds
evolved from these constraints.

Instead of relying on the virtual operating systems, and to permit the code to run efficiently in both the real
and virtual modes, POW3D employs its own data handling techniques. Efficiency was originally achieved
through the internal VIRTUL system {Pollard, unpublished] which relied on very fast Assembler I/O routines
for direct access files [Cawiey 1977]. Later the Assembler /O routines were replaced with FORTRAN
versions for portability considerations. The VIRTUL system allows data to be fetched and stored as though
they are being retained there and the whole operation is transparent to the user. The basic unit of supported
data corresponds to one (x,y) plane filled with information (an array on size N,N,, where N, and N, are

the nt}mber of grid points in the respective directions) arising from the finite difference idealisation of the z
coordinate direction. All data transfer is controlled through three indices; the type of data (i.e. matrix
coefficients, flux, source, §'s), the relevant (z} plane indicator and, if appropriate, the energy group.

Under VIRTUL, all of the spare primary storage for the specified region size is divided into {x.y) planes,
then allocated among the fluxes, coefficients, efc., on a basis which can be varied by the code writer. Once
all the available real store is used up, the remainder of the data is assigned to disc storage. The code writer
is no longer concerned with the destination or source of the data. An attempt by the code (under VIRTUL)} to
read (or write) data assigned to real storage, simply results in a fast move operation which transfers data to
or from the appropriate POW3D working array. in the case of disc storage, the fast /0 routines transfer the
data directly between the appropriate arrays and the disc. (A memory sharing system is aiso used for some
data.) This is an approach that functioned successfully under the older machine architecture.

For computers with the newer architecture, three approaches are available under the VIRTUL system
which do not require alteration to the code, however, only (i) and (jii) are supported on the Fujitsu VP.

i.  Aregion of arbitrary size may be specified (say 10 Mbytes). The data for arrays that do not fit into the
requested region are transferred to and from disc storage directly through read/write instructions within
the VIRTUL code.

ii. A region of small size may be specified and the virtual I/O facilities of the compuier operating system
allowed instead to perform the data transfers when the VIRTUL system requests a transfer.

iii. A maximum sized region may be specified, so thal wherever possible, data transfers are memory to
memory and are under direct control of the VIRTUL facility.

No matter which option is in force, the performance of the code is of greatest benefit when the compuler is
lightly loaded on large problems.

Unless sufficient fast storage is available to hold a minimum number of working planes of information, it
is inefficient to commence the calculation. For mathematical manipulation, the code requires a number of
working arrays (based on the x,y plane). These are in addressable memory. Before the advent of IBM's
virtual operating system {MVS), the necessity of their presence prevented the code from commencing a
calculation when memory was unavailable. Under MVS, and UNIX on virlual machines, the requirements
are identical, but the calculation may commence even if there is littie chance of obtaining the memory. In
such an environment, there is always the possibility of page ‘thrashing’ when the machine is heavily loaded.
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The different iterative algorithms are implemented in an environment in which the amount of directly
addressable memory required for their efficient working is the same. Each uses the space in very different
ways. For MiNi and SLOR, double precision arithmetic was clearly necessary, whereas at the design stage
ICCG was expected to perform successfully with single precision operations in most sections. (The Lo’
incomplete decomposition, however, is performed in double precision.) Because ICCG requires more work
vectors than efther SLOR or MINI, there were spatial condiderations which were more dominant factors
(than speed) in avoiding double precision arithmetic where possible.

7.2 Data Block Structure for ICCG

To understand the computational implementation of ICCG, a modified mathematical form, suited to the
data biock structure of the three-dimensional form,

A] 1 A12 -1 5
Az An An o, S,
Asz Az Asg ¢, S,
g}
L ANzNz-l ANzNz_ _ng | _§Nz i

(7.2.1)

is used. {Remember that only the data is block structured, not ICCG.) In addition to the sparse matrix A and
vectors ¢ ands, six working vectors of length N,N,N, are introduced for convenience. These are
t,d,r,h,uandyv. The components of the block tridiagonal matrix A used in the formulation are as given in
structure 7.2.1, whereas the sub-blocks L ;; and D, (i,j = 1.2,...,N;) represent the matrices appropriate to the
incompiete Choleski decomposition of A, which is presumed to be computed previously. The vector notation
& « represents the k™ subvector block of ¢ of length N,N, when ¢ is ordered ¢= { 9,0, .0, } In the

following description, any improperly formed matrix or vector operation is ignored.

Solution of Ag=s by 1ICCG

start perform incomplete LDLT decomposition of A
choose ¢ 0
initialise 1 @ = 0, d @ = 0, ¥ = 1, 0=p=0
loop i=1 to maximum iterations (N,N,N;)
t0=g 4 By, O
9‘? =9 (i,_l)_'*al 0
if (any at {! > ¢) then set not converged flag
=0
ioopk = 110 N;
e =gyl eprly
ol =0 i(c:‘:'} +otdh
if (any a1 [}, > €) then set not converged flag
if (k=N, & converged) then finish.
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tfesy-Aued- Akk+19k+1 -r
hQ lek(" -t kk—l —J)

D= A
endloopk
By=Ba=Pa=7"=0
k = Nz
d@=Lg! D by
loopl=1toN,
ull=A kk.t_é" + At + At
Ba=P2+d MMy
Bs = B3 +1k (')T

7‘"-7‘"+1’“’Tdk
vl = And®+ApdS ; _
ﬂ-umm)mwhm&-uﬂgﬂ
VO =y P4 Ay df (A <> Al
Bi=B,+d Ty

Ba=PBa+1 Py

Kek-1

end ioop |
—y Oy 0D

o =y" /(B + BB+ BB 2))
end loop i

end
7.3 Computer Implementation of Three-dimensional iICCG

The implementation of ICCG in POW3D is presented in a format that lies somewhere between the high-
level language and a mathematical definition. To understand the process adequately, the foliowing data
structures and notation are introduced.

o represents a storage vector (in VIRTUL memory) containing the three-dimensional flux, ordered in
terms of directly transferable subvectors

{dr:k=12..N,}
Each ¢ , is also ordered
oy = {0:i=1.2..N,} and, atthe lowest level,
{O) = Op:i=1.2,...N.}
s represents the right hand side of equation 7.2.1, is stored in VIRTUL memory, and is structured like .

e.d .1, h are work veciors held in VIRTUL memory and structured like ¢. In the algorithm they are
always subscripted.

A represents the matrix of equation 7.2.1 held in VIRTUL memory. The matrix is block structured like
equation 7.2,1 and each block may be identified directly and transferred, e.g.

A ket A OF A s

a plane ftlled wnh miormatlon {N;N, locations and are subscripted in the ICCG algornhm) (Note that g d.
and 1 shouid not be confused with the larger vectors of the same name held in VIRTUL memory.) To assist
identification they are not subscripted. Nine vectors are used for convenience of description, however, U, g
and x* may share the same physical locations, as is the case for v and b. Different names are selected only
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1o assist understanding; x , X* and b are double precision vectors.

AL, A, A g are three computer memory matrices each capable of holding an individual block submatrix
of equation 7.2.1. To save storage and time throughout this operation, only non-zero matrix elements are
actually stored and transferred.

« represents a fetch operation from VIRTUL 1o real memory. In each feich operation, the intormation for a
full {x,)) plane is transterred to the appropriate vector or matrix. The transfer may be achieved by one of the
following mechanisms within the VIRTUL system:

(i) a direct access read from disc storage,
(i) a move from other directly addressable memory, and
(iiy ~amove from virtual memory.

The fetch operation applies both to block subvectors, é.g.
x « ¢;(thei™ (x.y) plane of ¢ is fetched),

or block matrices, €.g.

A, & A 14 (the k™ off-diagonal block is fetched).
— represents a storage operation from real to VIRTUL memory.
It follows a similar convention 10 «.

= represents computational assignment.
{t )  denotes the i element of the | subvector of 1.
{A,}jdenotes the (i.)™ element of the block submatrix currently being held in A 4.
diag(A) is a vector whose components are the diagonal elements of A,
[x] denotes a matrix formed with x as its diagonal.
< denotes equivalence of storage.
I\, denotes the lower triangular portion of a matrix.
Q denotes the upper triangular portion of a matrix

Throughout the description any improperly formed summations, vector and matrix operations or data
transfers are ignored. In the FORTRAN implementation, great care was taken to avoid unnecessary
operations and storage requirements were minimised.

*** solves A ¢ = § equation 7.2.1***

*** ICCG 3-D implementation ***

*** Assume estimates of ¢  (k =1,2,...,N; ) have been made and stored ***
*** LDLT decomposition of A ***

foop k=110 N,
Ay A wAs e Ak Ag e A

e 8k
loop i=110 NN,
=3
e;= {diag(Ay)} - T {A) P e - {diag(A) 21,
j=1
e.=1'e, (D, =1/L,))
end loopi
[l " (store diagonal D)

end loop K
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ik

*** conjugate gradient section

loop i= 110 maximum iterations
dedqlet X0,
1=d+B1t
iflany| atml/|xml| >€; m=12,.,NN,) then sei not converged flag
X=x+at
Az(——A11,A3(—A12
<0
loop k=110 N,
de g k+1=l(_lk+1' _X_' e 0y
t=d+pt
1oty
if(any ot mi/]%m| >&;m=12..NN,) then set not converged flag
X'=x'+ot
X" by
if (k.eq.N;.and. not converged flag unset) then finish
besy
I=b-A,x-Azx"'-I
e A
tehy,
diag(A p) « /e (fetch L;; i=12,..,N,N, )
d=[NAJ" (I-A,t)
d—hy
A=Ay (A 5 = A g4y by Symmetry)
Ase— A As e Az

o= x> aq
1 =
]
I:r"‘z'm
n

hd (fetCh Lii ' i= 1,2,...,N N )
q Ty
(A:)]-‘[dlag(A:)]I (LT )—I D—l

o

(=]
—

[N

— x

—

—

L)

ES

T aio
l
n o=

TioN,
k» r('_lk—1vg<_.'.t-k+1
I+At+Azu

op

e - -
0ot
p-

S i I T I

IIT

> |

a=Ay
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AieA Az Ak

x= diag(A,) (Save diagonal D)
diag(Az) = /e«

X =1N (a1 @- A0

diag(A ;) =% {restore A ;)

B =y iy -9
a=vB,+B2B+Bs B
end loopi
finish error condition
end ICCG

POW3D offers ICCG as a possible means of solution for two-dimensional problems. The algorithm
outlined above is more complex than required for two-dimensional data structures, so separate code is used
for efficiency. For such problems, all of the spatial information resides in directly addressable memory while
the solution is perdormed. The procedure for two-dimensional calculations follows the conventional
mathematical formulation {section 6.5) and is not presented.

7.4 Computer Implementation of Three-dimensional MINI

The MINI process of POW3D outlined in sections 6.2, 6.3 and 6.4 is & block procedure for solving the
linear systems of equations 7.2,1. In this respect, both MINI and SLOR differ markedly from ICCG. A
description of the double block process to solve this three-dimensional system of equations is given. The
third level, with MINI for the energy layers, is not presented but its impiementation is a logical extension of
that used for the three spatial dimensions.

The three-dimensional form of MINI requires the use of two distinct ys at each grid point. One is related
1o the forward line (the ‘in-plane’ y,} and the other related to the forward plane (the ‘out-of-plane’ v, as shown
in figure 1; (a thirgd v,, not shown, is necessary for the energy group MINI). On the first pass it is possible
either to set v = 0 and obtain a GS approach, or to calculate a somewhat arbitrary value of ¥ (perhaps from
the last outer iteration). In POW3D, the default option is a GS start on the first outer iteration for each energy
group of any new model. On subsequent outers, knowledge remaining from the previous outer is used to
obtain a true MINI iteration tor the first inner iteration,

Like SLOR and two-dimensional ICCG, the inner-most (or two-dimensional) MINI block requires no data
transfers because all the necessary data are established in computer memory by the outer block driver. A
similar notation to that defined in section 7.3 is employed for MINI. MINI, however, uses the following
working vectors x

ihe elements of [ as they are required, but the algorithm is more succinct in the form shown here:

tsolvesAp=8 equation 7.2.1 "
*** 3-D MIN} algorithm ***
***assume estimates of ¢, (k =1.2,....N,} have been made and stored ***

loop n=1 {0 maximum iterations
Des,
X0,
A-—A, A <A



loopk=110N,;

he ¢y

4«3,

g8,

fork =Nz loop| =110 N,N,
y,=min(|e,/d ][4, /e, ])
Ly=minfy,,}y/x|)
endloop|

b=b-Ash+I Agx

diag(A ,) = diag(A ,} + diag({L" A 3])
e=x

de By

*** invoke plane MINI routine to solve Ax=b**"
Call plane MINI (A5, x, b, d)

“** golution returned in x, in plane &'s in d***

d -3k

end loop K
if {not converged flag unset) then finish
endloopn
finish error condition

Procedure plane MIN] (A, x,b,d)
“** A, x,b.dare block (line) addressable ***

loop n = 1 1o maximum iterations
loopj=1to N, '
forj#N ,Joop i=110N,
Yo=min(d,. 1,/ {8}, &} 1.3
Fi=minly; [ {%pediflx}il)
end loopi
bij=DBj-Ajj1X +£TAjj+1 Xjwt
diag(A ;) = diag(A ) + diag([L T A jj.1])
d;= (Ajj)_1 b
i (any| {d,}| >€) thensetnot converged flag
Xj=X;-d;
end loop j
if {not converged flag unset) then return
end loopn
return error condition
end procedure plane MINI
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{out of plane 3 'sfor current plane k)
(out of plane §'s for next plane k+1)

(in plane §'s from previcus pass of plane k)

(store within plane &'s)
(store solution for k™ z plane)

(solve tridiagonal system)
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All of the mathematical schemes were developed in FORTRAN. Experience with the block methods
AINI and SLOR indicated that much of the time was spent in converging individual (X,y) planes instead of
erating in the z direction. Being a global method, ICCG spends time in a more even-handed fashion.
>onsequently, it was possible and computationally attractive to rewrite the inner-most blocks for MINI and
51.OR in Assembler language [Cox 1976). Even with an optimised FORTRAN compiler, this resulied in
ignificant time savings. Although it was possible 1o do the same for ICCG, the enormity of the task of
vandling the third dimension made it less attractive. Only FORTRAN versions, however, are now provided
or reasons of portability.

MINI works harder at converging the (xy) plane than it does in the z direction. In general, it requires
swer z iterations than ICCG and this bestows on MINI a great computational advantage because far fewer
O transfers are required for large reactor problems. This affects the turnaround time for such jobs by

rders of magnitude.

In addition, the storage limitations require ICCG to have more intermediate /O transfers than MINL. The
umber of /O transfers and floating point arithmetic operations per z fteration pass for the POW3D
mplementation of the three Rterative schemes is given in table 1. The I/O penalty of matrix block transters is
arger by a facior of three for ICCG. SLOR requires fewer /0 vector transfers but MINI is not badly

»ehalised.

It is hard to evaluate the number of floating point operations per z pass because ICCG is not a block
;cheme, but clearly ICCG requires fewer per z pass. When obtaining a converged result, the advantage of
CCG may be illusory because more z passes are required. SLOR needs slightly fewer operations than MINI
yer pass but the performance of the [atter more than makes up for the difference in floating point operations.

TABLE 1

NUMBER OF I/O TRANSFERS AND FLOATING POINT OPERATIONS
PER z ITERATION FOR THE 3-DIMENSIONAL FORMS OF
ITERATIVE SCHEMES AS IMPLEMENTED IN POW3D

N,,N,.N, are the number of grid points in each direction,
and K is the number of iterations necessary to converge the two-dimensional subsystem.

Type of SLOR MINI ICCG
Operation

Matrix block transfers N, N, 3N,
Vector block transfers 3N, 7N, 20N,
*/ floating point (B+10KINN,  (S8+12K)N,N,  37N,N,
arithmetic

+- floating point (5+6K)N,Ny (5+7K)N,N, 32NN,
arithmetic

7.5 Some Resulis

Results for a typical three-dimensional reactor system are given. The study is for a fast benchrn_ark,
sodium-cooled breeder reactor {LMFBR) investigated by Buchel et al. [1977]. Two (x,y.z) geomelry versions

are considered:
B1 of 20 x 20 x 12 mesh points, and
B2 of 39 x 39 x 37, a half spacing of B1 mesh points.

The dala are available in four energy groups. The results are recorded in table 2 for the various solution
sirategies. Because this is a fast reactor (no upscatter in thermal groups), it does not demonstrate the great
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advantage displayed by MIN! in that dimension. For the simpler B1 geometry, there are few differences in
central processor unit {CPU) time required, but for the more involved B2 geometry the SLOR method
periorms poorly. The MINI-MINI combination and ICCG use similar CPU times, but when driving the z
direction iteration, MINI requires fewer passes.

Results were obtained on an I1BM3031 with the computing region requested for the VIRTUL structure of
POWS3D equal o the available real storage of the machine. To enable comparison, all mathematical sections
were compiled in FORTRAN. As it was not possible to obtain exclusive use of the machine, elapsed times
have been discounted to allow for the possible presence of other jobs by the formula
CPU time in frequently invoked routines

Elapsed time in same routines

Real elapsed time = Measured elapsed time x

The CPU time spent in arranging I/O transfers (this is the total CPU time in the VIRTUL routines and
includes all times that the IBM computer books against the work) for the three methods indicates that ICCG
takes considerably longer. The relative cost is not so high as predicted in table 1, because other routines in
POW3D also require a considerable overhead. (Much time was spent improving the functioning of these
routines.)

TABLE 2

IBM3031 TIMING CONSIDERATIONS FOR THE LMFBR STUDY

*Convergence was not achieved in the time available;
extrapolation was used 1o obtain these figures

Method Total O CPU 17O Number Total Total
CPU Time Time Elapsed 1O Calls Piane z
(x.y} (z) (min) {min) Time x 1000 lterations  Iterations
(min)
B1 — Coarse Mesh Spacing
SLOR SLOR 17.8 1.8 16.8 36 11 069 226
SLOR MINI 18.3 2.3 224 44 9 845 194
MINI SLOR 249 2.7 285 56 13 353 333
MINI MINI 21.2 3.0 31.3 57 8 621 213
ICCG SLOR 24.0 2.1 11.2 44 7777 267
ICCG MINI 24.0 1.7 12.7 57 59844 215
" iCCG 20.7 5. 62.5 102 207
B2 — Fine Mesh Spacing

SLOR SLOR 279.4 9.9 73.6 153 57 690 744
SLOR MINI 2043 12.0 144.7 155 30 455 366
MINJ SLOR 310 12.7 152.0 184 52946 687
MIN1 MINI 189.8 10.8 i11.6 149 24 540 306
ICCG SLOR® 353 8.9 98.9 442 33220 634
ICCG MiNI 212.7 10.5 118.3 57 15 253 282
ICCG 228.1 25.3 296.2 401 454

The /O elapsed time (table 2, column 3) is the time that elapses while POW3D is involved in purely I/O
activity. (I is not a measure of total elapsed time belore results are returned. Assuming no other computer
users, the total elapsed time is obtained by adding the individual times from columns 1 and 3.) The elapsed
time values show ICCG to be a very poor performer. Although the SLOR-SLOR combination gains some
advantage in l/O elapsed time, MINI-MIN! emerges as the better performer when elapsed and CPU times are
combined for the fine mesh problem.
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7.6 Evaluation of llerative Procedures

Experimentation carried out so far suggests that the three iterative schemes are all contenders for solving
spatial aspects of the neutron ditfusion problem. The characteristics of each scheme are considerably
ditferent and the ‘best’ choice probably depends upon the specific problem and the priority with which a
solution is required.

Generally, ICCG is the faslest for two-dimensional problems (CPU time) and for smali three-dimensional
problems, although the savings are not necessarily significant. As the complexity of the problem increases,
MINI-MINI and ICCG appear comparable in CPU time, but 1/O penalties in data organisation favour MINI.
The amount of disk storage required for the larger problems is significant, the requirements of ICCG being
greater than either SLOR or MINL. The requirements for ali methods are sufficiently large to present real
difficulties. Th_e working data sets are best allocated to different units for efficient disk head movements,
and ICCG again suffers most because it uses more data sets. Single precision arithmetic is adequate for
ICCG on most problems although it presented significant difficulties for one of the models tested. Recourse
to double precision intermediate working space in memory and on disk files would have placed too great a
burden on most computing facilities when the code was first developed.

The I/O overhead per fteration is a minimum for SLOR-SLOR, but the SLOR-driven z direction is the most
inefficient scheme in terms of number of iterations, and this counterbatances SLOR-SLOR's advantage.

As an energy group driver, MINI is significantly more efficient than GS when considerable upscatter
oceurs. Even without significant upscatter, little additional expense is involved and it is worth retaining MINI
as the default option for energy group iterations.

The authors believe MINI to be the best default option for the nuclear code.

8. ACCELERATING CONVERGENCE BY COARSE MESH REBALANCE

8.1 Introduction

In POWS3D, the convergence of the group and spatial iterative schemes may be accelerated through
coarse mesh rebalance (CMR). At present, there is no attempt to accelerate convergence of the eigenvalue
problem with the variational approach. Several schemes were tested on two-dimensional preblems; these
routines are available within POW3D. One scheme, however, appeared so computationally superior that it
was the only one to be implemented for the third spatial dimension (and energy).

Consider the linear system
Ad=15 , : (8.1.1)
where 4 , is our initial estimate of ¢. Coarse mesh rebalance (CMR) uses a set of appropriate trial {or basis)
vectors x; {i = 1,2,...,M) to oblain a better estimate for ¢:
M
0= b+ Y aix; - {8.1.2)
i=1
The number of irial vectors M is usually considerably less than N, the order of the original system 8.1.1. The
unknown coefficients a ; of eqquation 8.1.2 are obtained by solving a much reduced matrix system
Aa=k . (8.1.3)

The solution may be carried out by MINI or direct techniques, the choice being influenced by the type of
wrial vector used. The reduced system of equations is obtained by weighted residuals. it the approximation
8.1.2 is used in equation 8.1.1 a residual

I=Ao¢-s

and the unknowns a, (i = 1.2,....M) are determined by making r orthogonal to a set of weighting vectors w
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(1=12,..M), ie
<w f>=0 (1=12,.M) ,

giving the relationship

M
<W,Abo+ Y a;Ax;-8>=0 {(I=12..M)

i=1

or
T <W,AX;>8;=<W,8-Ad,> (I=12,..M) . {8.1.4)

i=1

Several choices of trial veclors are available, and they form a considerable number of combinations with
suitable weighting vectors. There are two basic forms of CMR - multiplicative and additive corrections. The
multiplicative form is oblained by writing the improved estimate 8.1.2 as

. |
¢= I ax;, (8.1.5)

where the values for x ; are selected to reflect the structure of the estimate ¢ , of ¢. This can be achieved by
introducing M partitioning operators P j so that

X, = Pjdo (i=12..M), (8.1.6)

where values of Pj are chosen so that

The M x M system of linear equations arising with the multiplicative form looks a little simpler than the
generai form 8.1.4:

M
iz1<ﬂ|,APiQ°>ai=<ﬂ|,§> (|=1,2,...,M). (817)
The partitioning operator P ; divides the spatial (x,y and z) and energy dimensions into a suitable form. In
POW3D, the partitioning is done so that the non-zero elements of x ; are connected geometrically. POW3D
automatically positions the coarse mesh lines of the subdivision so that the reactor fuel is the prime
determinant of their position. Non-fissile materials and interfaces between materials are the secondary
criteria considered for their aliocation. In POW3D, the order of the coarse grid is approximately the square
root of the order of the fine mesh.

The location of the coarse grid should vary with the degree of mathematical sophistication involved in the
choice of partitioning operators. The code allows the knowledgeable physicist to force an estimate of optimal
coarse mesh partitioning; this has proved useful for experimental purposes. The automatic generation in
POWS3D was designed o accommodate the first form of partitioning to be described (i.e. the disjunctive
type).

Three forms of partitioning have been tested with the code, but only one {8.3.1) is available tor the third
dimension. The others were implemented in two-dimensional form but the results did not seem to warrant a
three-dimensional implementation [Barry 1982). Two of these forms of partitioning involve multiplicative
corrections 8.1.5 and 8.1.6: in the third, the vector ¢, is readmitted (8.1.2 and 8.1.4) as an additional type of
correction. The trial vectors are then a set of prescribed vectors unrelated to the solution obtained for ¢ ,, s
far.

In all cases, the forms of partitioning generate sets of M basis veclors which are linearly independent.
For the disjunclive methods, the basis vectors are also muiually orthogonal and the P, are projection
operators.
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8.2 Types of Partitioning

8.2.1 Disjunctive partitioning

The spatial domain D, over which the discretised form of the diffusion equation is defined, is divided into
M subdomains Dy, Any vector ¢ of length N {(where each element of the vector corresponds to a value of
¢{ 1), defined over D) is partitioned so that each element of ¢ belongs to one and only one subdomain D,

The partitioning matrix P is simply a diagonal N x N matrix, where certain diagonal elements are unity.
For a one-dimensional problem, P; has a single block unit matrix structure which is not preserved for higher
dimensions in POW3D as the non-zero elements become scattered. The structure now depends upon the
spatial ordering of the elements of ¢. A two-dimensional geometric represertation of disjunctive partitioning
is given in figure 2. The coarse grid divides the fine grid into four subdomains D;, D;, D3 and Ds. The
division of the fine geometric mesh is such that each fine mesh point belongs to only one subdomain D,
Consequently, the operations P, ¢ o, P> ¢, P30, and P, 0, simply pick out values of ¢ , defined over the
four subdomains. The improved approximation is

M
¢ = iE1aiPig!u

It effects an acceleration of convergence by rescaling the flux estimale ¢, by a constant a; over each
subdomain.
8.2.2 Multiplicative ‘pyramid’ partitioning

The disjunctive methods destroy any continuity exhibited by the flux estimate at coarse mesh boundaries,
so a more complex scheme of ‘pyramid’ {or, more correctly, ‘pagoda’ [Nakamura 1977]) was incorporated.
This attempts to overcome the introduced discontinuity in ¢ when a more realistic form of correction is
applied across the subdomain D,,,. This form operates in POW3D tor two-dimensional geometries only.

The spatial domain D is divided into M subdomains D; which is defined in terms of | spatial subregions
R . This time, however, an element of 4, may be common to more than one subregion (ie. the

subdomains are not mutually exclusive). Typical positions of the coarse mesh lines are shown in figure 3.
These divide the fine mesh to form 6 subregions (R,) which are combined to form 12 subdomains

associated with the comers of R,. In this case, any fine mesh point lying on a coarse meshline of
subdivision belongs to all subregions associated with that line. The partitioning matrices P (j=12,...,M)

are again diagonal, but the non-zero terms are defined over four adjacent subregions associated with each
subdomain (for two-dimensional form). For the partitioning operator defined over the domain D

(consisting of four régions centred at the coarse grid mesh node coinciding with the (k)" fine mesh point
(Xx,Y)) the non-zero diagonal elements of P; are defined by two-dimensional pagoda functions, namely:

YY) oH
PiY) = Yy o

for X £ X S Xiaq

Y€y sYi,

(Ko=) Y sy}
(Xe1=Xi) (14— Y3

for X1 € X £ X

t

YISy <Y,

(Riear=X}Yi1=Y)
(Xia1=Xid (Y=Y
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for Xy € %€ X
Y|_1 < Y $Y| and

e\ )
KXY

for Xig £ X< X
YsSysY, . (8.2.1)

These definitions 8.2.1 also identify indirectly the domain D j, as that set of fine grid points associated with
non-zero elements of P;. Again | g‘l P = 1. Boththe disjunctive and pyramid forms of partitioning lead to an
M x M system of the form 8.1.7. (The latter is only available in a test version of POW3D.)

8.2.3 Additive pyramid partitioning

The additive form of partitioning 8.1.2 involves trial vectors that are unrelated to the original trial estimate
¢ .. There are considerable time savings when establishing the matrix system 8.1.4 because the matrix on
ihe left hand side is independent of ¢ , and hence does not aiter for each group upscatter pass or eigenvalue
iteration.

In POW3D, the piecewise continuous bilinear polynomials 8.2.1 — pagoda function — are selected as the
irial vectors. These are defined over subdomains and are identical to those used with pyramid partitioning.
Again there is only a two-dimensional implementation of additive partitioning in POW3D.

8.3 Types of Weighting
Two types of weighting are applied within POW3D. These are
()  Galerkin weighting
w, = diag {P,} (additive CMR) ;
(il Region balancing weighting —
w;=Pi1;
where P, is the disjunctive partitioning matrix and 1 is a unit vector.

All combinations of basis and weighting vectors are possible; however, for reasons discussed by Barry
[1982], only the following combinations were ever implemented in the code:

Weighting Partitioning Equation

(i) Region balancing  disjunctive mulliplicative  (8.3.1)
(i) Region balancing  multiplicative pyramid {8.3.2)
(iiy Regionbalancing additive pyramid {8.3.3)
(ivy  Galerkin additive pyramid (8.3.4)

Of these only the first was implemented for three-dimensional geometries.
8.4 Rebalancing in Energy

A very simple yet effective rebalance lechnique known as energy rebalancing is available. All the spatial
{(x,y and z) information is 'coliapsed’ to a single point. This is achieved through a single disjunctive
partitioning operation (i.e. P =1 (g =1,2,..,G)) for each energy group equation in turn, and the use of an
associated weighting veclorw = 1.
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Energy rebalancing is an operation which is performed once for each outer iteration for the eigenvalue
problem, or once only for a source problem. The operation is performed when the first energy group of the
eigenvalue equation 4.2.2, or the equivalent source equation, with neutron upscatter into it is encountered.
In the case of the eigenvalue problem, after all the fluxes have been rebalanced, they are renormalised to a
predetermined source strength (power jevel). Because of the small number of energy groups there is no
advantage In collapsing the groups still further.

When POWS3D was being used as a research tool, it seemed that the twin concepts of rebalancing the
fluxes in energy and space could be combined with very little additional effort. This form of global
rebalancing was attempted and the possible combinations are outlined in section 9. By and large, the
authors do not recommend the limited forms of global rebalancing studied. :

8.5 Properties of the Coarse Mesh Rebalance Matrices

The coarse mesh rebalance equations generaled by POW3D are of considerably reduced order because
of the sguare root method used for aliocating coarse mesh grid points. It is possible in many instances 10
solve these efficiently by direct methods, because the time spent on their solution is insignificant to that spent
on the fine mesh. Nevertheless, for a general purpose code it is attractive to solve the reduced equations by
the same routines that handie the fine mesh. This is particularly so if the CMR method is ever to extend to a
multigrid technique [Brandt 1977].

The properties of the reduced matrix system 8.1.3 depend upon those of the original fine mesh matrix,
and the types of partitioning and weighting. The following fine mesh matrix is appropriate to a single energy
group in a multigroup model:

iy  real symmetric;

(i) irreducible;

(i) diagonal elements are positive, off-diagona! elements are zero or negative;
(iv) diagonally dominant {row and column).

When the weighting/partitioning combination 8.3.1 is used, symmetry and row dominance are lost.
Column dominance remains and is sufficient to guarantee GS type convergence, but SLOR and ICCG are no
longer appropriate because of lack of symmetry. Consequently, MINI is the #erative scheme used in
POW3D for the first weighting/partitioning combination. Unfortunately, when pyramid partitioning is used for
combinations 8.3.2 and 8.3.3, most of the desirable matrix properties are lost and no iterative scheme can be
relied on to converge. The matrix equation may even have negalive solutions which violate physical
considerations. In POW3D, negative intermediate solutions are adjusted in a physically significant way. For
Galerkin weighting, however, it is possible to establish [Barry 1982] that the reduced matrices are positive
definite for all forms of partitioning.

Some of the mathematical results may be extended to the eigenvalue problem, but at this stage POW3D
uses CMR only at each outer pass through the eigenvalue problem. This is the default option within
POW3D. Use of CMR is avoided when SLOR is used for the inner two layers until the optimum relaxation
factors have been evaluated.

The weighting/partitioning combinations were tested extensively in two dimensions. It was concluded that
only the first combination 8.3.1 would be worthwhile in three dimensions. Coarse mesh rebalancing is very
effective in hastening convergence. The reasons for its effectiveness are open 1o speculation, however, its
ability to remove rapidly the low frequency error components [Brandt 1977) from the solution estimale seems
important. Although the iterative techniques on the fine mesh will rapidly remove the high frequency error
components, they have difficulty in doing so with error components of low frequency. A Fourier analysis of
MIN! and CMR [Barry et al. 1983] supports the conjecture of Brandt [1877].
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9, CONTROLLING AVAILABLE MATHEMATICAL OPTIONS

9.1 Introduction

it is not our intention to describe the ways in which POW3D is used to model a reactor. These will be
described in a companion report [Barry et al., forthcoming]. Accordingly, descriptions of the input data are
restricted to those items which control the available mathematical algorithms.

The order of these records is somewhat important, full details will also be given by Barry et al.
lorthcoming]. Options relating to the choice of available mathematical methods are described. Like all
POW3D input data, a free format layout applies [Bennett and Pollard 1967]. In the description given for each
parameter, the code default option is given in italics.

9.2 method

method = /; i, is used to specify the solution methods used for the iterative solution of the sparse linear
equations. The two parameters are appropriate to the three layers in a three-dimensional multigroup study:

iy = mini for the innermost layer; (x,y) planes.
slor
iccg
io = mini for the outside (z) driver of the innermost
slor block. Only applicable for three-dimensional systems

When J, is coded as iccg, the second parameter is ignored. For example, the full MINI requirement is set
thus: '

method = minimini.

Apart from the restrictions on ICCG, any of the other block combinations are allowed, however, users are
reminded that MINI (section 6.4) continually alters the diagonal terms of the inner matrices, and for those
blocks it may have some effect on SLOR. minimini is the default option in POW3D.,

9.3 methsc

methse = mini | gs This specifies the method used to handle the energy dimension.
minint = i,/ This is coded only when MINI is used for the spatial geometry solution.

In the MINI process, should ali the v's (section 6.3) be zero, a MINI iteration is the same as an ordinary
GS iteration. When a new problem is commenced because there are no prior iterations, a GS start is
appropriate; this is forced by the code. When a new outer iteration (eigenvalue problem) or an upscatter
pass is encountered, it is necessary in the spatial domain to choose between a fresh GS start or MINI, based
on scmewhat older estimates of the flux. On test problems, it was discovered that a true MINI start was
better despite the fact that only very old flux eslimates were available to determine the y's. The user can
alter this default for outer iterations or upscatter passes.

ih =0 Each {x,y) plane solution starts with all the ¥'s = 0 for the stan of every outer iteration or
upscatter pass.
=1 Each (x.y) plane solution is started with all the y's set as a result of some previous

iteration if available, otherwise i; = 0 is chosen. This is the default option.
As for i, but applies to the MINI process in the third spatial dimension.
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The minimum number of iterations that must be taken by each application of MINI even
though convergence may have been achieved earlier. The defaultis 2.

i3

9.4 minins
minins = 0
= 1 This serves the same function for determining the ¥'s associaled with energy, as
mininf did for the spatial ¥'s on new outer iterations.
3.5 jmbal
This feature is no longer supported
3.6 jbpymr

This feature is no longer supported

3.7 Calculation Termination Data

Termination data for a calculation are initialised to a detaull set of values by POW3D and, for the usual
ob, these values should be adequate. Full details of quantities used here will be given in Barry ef al.
forthcoming]. Except for error 1termination {when POW simply ‘browses’ through the remaining data), a
alculation ceases when one or more of the following termination conditions is met:
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a} I,
@ i. overall neutron balance accuracy < acclam(1), default 1.E-4;

ii. local fission source accuracy < accfo(1), default 1.E-4; and
iii. critical k accuracy sk, if a search is requested.

{b) If machine time exceeds a specified limit (default 90 per cent of the time remaining for the current
job step).

(¢) if number of outer iterations, n > nol, a set limit (defaull 100).
(d) if nil, the set limit to the number of inner iterations = 0.

A user would probably only be interested in the above under the following circumstances:
(a) to reduce (the already tight) accuracy for a lengthy calculation;
{b) if the anticipated run time is uncertain;
{c} if a calculation is not physically meaningiul; and
(d) if a previous flux dump is 1o be entered for edit

For the user requiring more than a brief run through the termination conditions, further details are
provided below.

9.8 Accuracy Termination (acclam and accfo)
POW3D uses two main quantities to assess convergence of a calculation:
(i}  overall neutron balance, b, and

(i) local reaction {usually fission source) error, s{f), both of which change with each ouler iteration n.
In addition, for a criticality search we need to consider a further quantity:

(i) effective multiplication error, | k™ - K,poq | .

Let s;; " be the total reaction of indicated type for outer iteration number n in a box about the mesh point {i,j),
then we have the following meanings:

for a rea! eigenvalue calcﬁlation
sip = z Ol JopvordV,
for a real source calculation, as above if any reactor material is fissile, otherwise
§ I(]n) = % g‘bi(?) I(i])cnurss.gdv :
and nofiss is usually 2 (removals);
for an adjoint calculation
s t‘lm = % g¢utn)' Xpg-
We then have

i) b"=xrs,,Mzzs, ™Y
v i]

(i) SG ={nﬁx[ 5" 15,1 ]~ rr:lin[ s,/ s,‘;‘“”]} s /gl

with i and j taken over the whole reactor for which 5™ 20 and $is the total source value.
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POW ulilises a convergence counidown scheme from trial solution stage (MOP=3) to ullimate
onvergence stage (MOP=0}. Brielly, for the usual problem,

Stage Type ‘ Mode of Change

3 Power fteration b < acclam(3) and S < accto(3)

2 Chebyschev extrapolation b™ < acclam(2) andS % < accfo(2)
4<order<g

1 As above but more confident b < acclam(1) andS ! < accfo(1)
use 6 < order< 10

0 CONVERGED (provided | k'™ = K,eqq | < Kaqc)

for a search calculation

The default values for accuracy limits may be changed:

acclam(1}=1.-4,acclam(2)=1.-3,acclam(3)=1.-2,
icefo(1)=1.-4,accfo(2)=1.-3,accfo(3)=1.-2)
1sing the data, for example, acclam=1.-3
accfo=1.-3,
vhere here and normally only the final accuracy would be changed. Nole: The tight limits for acclam=1.-5,
iccfo=1.-5 are seldom, if ever, required.

.9 Performance tuning parameters
Detalls on performance tuning parameters are given in Appendix D.

0. CONCLUSIONS
The default values for accuracy limits may be changed:

acclam(1)=1.-4,acclam(2)=1.-3,acclam(3)=1.-2,
iccfo(1)=1.-4,accfo(2)=1.-3,accfo(3)=1.-2)
1sing the data, for example, acclam=1.-3
accfo=1.-3,
vhere here and normally only the final accuracy would be changed. Note: The tight limits for acclam=7.-5,
riccfo=1.-5 are seldom, if ever, required.
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APPENDIX A

TEMPORAL INTEGRATION OF THE TIME-DEPENDENT NEUTRON
DIFFUSION EQUATION

A skelch is given of the numerical methods used in POW3D to handle the 1femporal integration of the
multigroup diffusion equation {2.1.1} and the precursor concentration (2.1.2). The method is due essentially
to Pollard [1973] and designed for the two-dimensional code POW [Pollard 1974), the forerunner of POW3D.
The method is based on direct time integration according to the method of Stacey [1969] and aims to include
the precursor concentration in a natural way.

Assume that the flux and precursor concentration solulions up to the time t,, are known, and the
solution at time t ;= (t ,_; + &) is sought. Equation 2.1 .2 can be wrilten as

2iehelora = Bt e T oL tiogr ) (@=1200) (A1)
which, on integration, yields
ColL:p)=Cor;p-nereds
+ﬁaL;° eeletz oyl ety . (A2)
-1

with the notation showing that C ¢ r .t ) is now discretised. Across each time step the flux is assumed to vary
lingarly,

tp—t -1y
dolrt) = [T] ¢g(1:p—1)+[ o ]%(.L:p) ' (A3)
and each cross section is assumed to be constant,

ie. o(rt) = o(rh) , (A4)
where

o(1,T) = L:: oL t)dt /st . (AS)

Equation A5 is necessary, because within each step, the cross section may otherwise have had a
discontinuity {in function value or slope). Normally, however,

1
Tp = E (1p_1+tp)

By making the change in variabie

t=t,4+1dt
equation A2 becomes
1 !
Calrip) = Colr: P‘")ewld81 + By &t _[0 g het1-1) Ei‘ Cill:T) X
X [(1-t)oglrip-1)+10{riphdr, {(d=12..D0) . (A7)

The functions
1
Fn(X) = Jo ex(1 -1 )Tn" 1 dT
. 3 — -
Frpy = [ X070 T gy

are introduced, and equation A7 becomes
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ColL:p) = Cd(L:p-1)e‘}‘d5‘+BdatzT‘<’—o,g(;x,,) X
9

x [Fi-Agd)dono-1)+ Fay (A0 (LP)] . (d=12..0). (A8)

The multigroup diffusion equation can be integrated in a similar fashion. The terms are basically of the form
{
1= ] 7 ogrtegrnat

p~-1
and, with the assumptions A3 and A4, the inlegral becomes

| = %cgunp) [0 o(L:P-1)+ 6 o(L:P)]

To deal with the integrated precursor terms from A1, the precursor equation is integrated directly to give

L:: M C L1 = Bed B 0 (LT [0(Lip-1)+ 0 g(ripl+

+ Cy(np~1)-Co(L:p) . (A9)

Substitution of egquation A8 for C 4 r; p) in equation A9 and replacement of the integrated precursor term
frorm A1 with A9 leads 1o the required time integraied diffusion equation:

- V. Dn,g(.r.er) V¢'g(£;p)"'Ecrg(.f..Tp)"‘ZI(Vgat )]‘bg(.[;p)_
“3‘?099’(1'Tp) ¢9'(L;p)_x(2)(St)g-}%clg'(i;'fp)¢g'(£; P)

= V.Dog(1 %) Vo (rip-1)~[o(rT)~2/{vgdt) dg(L;:p-1)

+

;«E:Ggg:(InTp) & g L P=1) + X(1pe(Bt) § —:— 1l L) 0 gl £ip-1)

+ 2 tagho Golho 8) ColLip-1) + 8 o(1:Ty) (A10)

where 1he fission spectrum functions are given by

Xyp(St) = ?.'.pg“'ﬁ) + E'XUQ By G 1(Agdt)
Xi2p(t) = xpg{1-B) + Z;-ng Bg G oA dt)

Golx) = Fy{=x} .
G,(x) = 1-2Fi-x) , and

GQ(X) =1~ 2F2(—X) .

The integral functions Fy(X), Fn(x) and Gq(x) are evaluated through a single Pade approximation [Pollard
1973). This is necessary because of the sensitivity of the analytic functions in evaluation on a computer.
Integration by parts of the spectrum tunction Fn(x), results in the recurrence relationship

Fa(x} = [X Fou (x) + 1]/

Now F,(x) = [e"-—l]fx
which presents difficulties for computer evaluation for small x. Consequently, the Pade approximation
Fox) = 3600 — 180X+ 30%* +x* +bx*
: 10800 — 3240x + 360x> — 15x°
where b = 3.5711027315x10? is employed. Direct evaluation is used for x<-1 which is not subject to

excessive roundoff error and the overall approximation is continuous for the choice of b. The relation
Fn(x) = Fa(X) -le ( X)
is necessary to enable evaluation of the remaining spectrum functions.

for —-1<x<0
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APPENDIX B
SPATIAL DISCRETISATION OF THE NEUTRON DIFFUSION EQUATION

B1. INTRODUCTION

The derivation of the finite difference representation for the three spatial dimensional diffusion equation is
given for a single energy group. The derivation is for an (x.y,z) rectangular geometry divided by a grid
system that consists of planes parallel to the appropriate axes. (The special cases, 2D cylinder and 1D
sphere are not treated here, but are derived so that accurate volumes are retained.)

Spatial integration of the diffusion equation A10 is carried out over integration boxes surrounding each
grid point. A typical box is shown in figure B1; the box is subdivided into eight smaller boxes 10 permit
integration over varying materials. Approximations are then sought for the resuiting integrals. The required
flux solution ¢g([,t) is calculated at the intersection of the grid lines (the edge flux method) rather than the
computationally simpler (centre flux) method using grid centres. The edge flux method results in a more
accurate approximation for the neutron leakage about a point.

To identify the materials making up the region of integration in figure B1, the sub-boxes are numbered as
indicated, specifying the furthest diagonal from the centre (x,y,z) and using an abbreviated notation of
successive digits ‘abc’ to denote a point (x+(a-1)..., y+{b-1)..., z+(c-1)...), where ‘... is the half mesh spacing
appropriate to the indicated axis: 1-(222), 2-(022), 3-(002), 4-(202), 5-(220), 6-(020), 7-(000), 8-(200),
and the grid dimensions are shown.

The non-leakage terms such as fission emission {vo, )are considered first, and then the neutron leakage

term (—V.D,V). The following notation is used:

1 =1,2,3,4,5,6,7,8 as an index for each sub-box,
m, identifies the material for box |,
o(m) the cross section of the material filling a sub-box,

h, is the grid width as indicated in figure B1; = 1,2,3,4,6,7,
h max{ h,, h, ha, hy, he, h7)

v, is the volume of the " sub-box,

&y is the flux vaiue at the point (i,j,k).

B2. INTEGRATION OF NON-LEAKAGE TERMS

Approximations to the non-leakage integrals of the form
I =, olt)e{rdr

are given first, where for convenience the solution is simplified from thal of equation A10. ¢(r,1) is
expanded by a Taylor's series aboul the grid point (i,j,k):

or) = &y + Ofh)
and when the first approximation is used, the integral becomes

.I = i J.,U(E)dl + 0On%),

. a
since V=h’



| = o Toim)v, + Ofh').
1
The discretised approximation is then
8
Jolnyelnd = ¢ |2: om) v, .

The centre flux method would yield a computationally more efficient approximation of the same order of
accuracy, however, the edge flux system is used because it provides a more accurate approximation for the
leakage term.

B3 INTEGRATION OF THE LEAKAGE TERMS

The leakage integral

| = ], V.0a(D) Vélr)dr

is transformed by Green's theorem to

| n. D,(r)V ¢{r) ds,  (B3.1)

= - Ibox—smtace

and suitable approximations are sought which are required to satisfy the internal boundary condttions 2.1.5
and 2.1.6. The discrete approximation for B3.1 is given by

| = )8: b (B3.2)
I=1

where | denotes integral approximations over the external surface of each of the eight sub-boxes.

Attention is restricted first 10 boxes not touching the external boundaries. The summation in B3.2 is broken
down into summation over 24 box surfaces:

24
i = Z[f.
i=1

where the 24 surfaces are ordered counter clockwise and the diagonally opposite. nodes are used to specify
the surface viz:

1(121-222), 2(121-022), 3(121-020), 4(121-220), 5(011-022), 6(011-002), 7(011-000), 8(011-020),
9(101-202), 10(101-002), 11(101-000), 12(101-200), 13(211-222), 14(211-202), 15(211-200), 16(211-220),
17(112-222), 18(112-022), 19(112-002), 20(112-202), 21(110-220), 22(110-020), 23(110-000), 24(110-200} .

Consider a typical surface 13(211-222) then the leakage component D,(rn,)-gi:i may be approximated

3| 3| . h 3., .3
Dim)Ge] | = DamISH + oD+

0 o 0 0 2
e y20m e Zo,mB . op).
0

0

Integrating this over the surface (13) yields
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= —HD,(m,)%*;—Ldde = -[[Dx{ﬂ'h)%lo + ?-B—x D,{m 1)a¢ :lﬁ:_ﬁ_ +

hihe a6 _ hhi 3 4
Ml @ ._.l 0
T ayD'(m"ax0 16 azD( ') + om)

and by substituting the expansion

oumfon -] = | noumiB + B ZoumZl | +om

in equation B3.3, the result

2
M[‘Puk ~Ouip] - Ei%ay Dy(m 1)a¢ -

R
16 oz
is obtained. On the opposite face, 5(011-022), a S|mllar resurl (B3.5) emerges

D hh
ls = M[‘I’uk‘q’huk] - 166 By Dy(m z) +

hhg h2

s =

Dm)gH  + o

(B3.3)

(B3.4)

(B3.5)

Combining equations B3.4 and B3.5, while taking care to satisfy the internal boundary conditions 2.1.5 and

2.1.6 proeduces
h a
hs+ls = M {D (ml)[%( ¢r+1ft] + ngz) [‘ba“i’l—m]} + O,

4

In a similar way, the following integral approximations may be obtained:

D,
117+|21 = Tl{ (ml)[¢lk ¢D&+1] I;TS)[(PR'_Q)&-]]} + O(h“)

g+l = h—i":‘—’{EzT::‘—?)[%-q)w]+Dzr(]':’6)[¢n-¢m_,]} + Ofh*)
hetls = 5}{9%:’—”[%—%1.] + D‘}SZ"B)[q:rcpH,k]} + Oh)
= h4: {D,:lrlns)[% o] + D(ms)[w ¢”_1k]} + O
ol = hzjv{D e ]+ D(mq)[% ¢u—1k]} + op)
o+l = hi‘"{D(Tz)[% ] + (m"‘) [on—¢uyn]; + O
il = h4:6{0h ] + D(m‘)[tbgk ¢in]} . o)
hewls = ﬁ}{ - [“’nk mn]* - [4’%‘%&}

ly +1as = “‘“3{0( D gy-0gn] + 208 [y - ¢.,“}

D (mv)

[% ¢W]} + OhY)

4
h,hy [D,{ms)
2 3{ hr:3 [%k ¢ix+1]
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s +l; = 23&{9—’{%!‘1[4’&-‘9»111;]"'[)"5:17)[¢g-¢»-1y]} + Ofh?).

4

Consequently, the approximation of O(h*) for the leakage is

(VD OV d = aldyue + aﬁk‘h-m + al P

4 5 6 7
a8k Gmpx + Pyt AP + A iy

If I, is the leftmost term of {I, +l, } and [, is the rightmost term, efc., then

8}y =—[ﬁ‘%1§-0,(m,) + h2%0,(%) + E%Dy(ms) + h—i‘lny(mg]ml (= [ +y+l+1)
e = - 260, ma) + e m) + 0, m) + B0, o (= fs +lg oty +h)
T = -[ 250, me) + 226D, me) + 22170, my) + 242D, my) iy (= #ho s 1)
Sh = | EDm) + 25EDum) + 20, "“’Dtms)]”‘ (= by +hy s 1)
st = -[24oym) + 2hn,m) + M50 m) + BEDm e (= sty i)
afj = -[%’iﬂ,(ms) ! hlD L(mg) + I"’hsD Lmy) + 30,(m3)]ih, (= by +lay +lpy +lg )
afy, = - Taf, (B3.6)

me5

it is necessary to study the behaviour of the approximation at boundaries. Consider the face B(111-122)
as an extemnal boundary, then

| _ a¢1 2 a¢\
Zom o
+2 > D,(mz)' , + 0O},

and upon integration over the external face

” 30 _ [hh h2h 3
o3 orer = - [Meom)% « Mo m)H .

2
» e 35 my) 28

ofh*). B3.7
léazmaxo]+() (B3.7)



.43

’n the opposite face (not on a boundary), NB(011-022), the integrated term is given by equation B.3.5 as
3 h,h h’he 2 3
.U Dx(mz)gLa dydz = ‘;h—:Dx(mz)[%x _¢’H]k] + —‘l'giggox(mz) ax, +

hhg 3 §¢;| ‘
+ =T Dyfmy) >, " o). (B3.8)

\dding equation B3.7 and equation B3.8 leads to

d
- Joum 2 o+ ouma e

hh h;h 0
= I',f'ox(mz)[%]k-ﬁh-llk] - %Dx(mz)aia + Ofh?). (B3.9)

'he second term in equation B3.9 can be replaced directly by using either boundary condition 2.1.3 or
21.4. Consequently, the leakage approximations given by B3.6, and modified according 1o B3.10 and
33.11 are suitable at all grid points. The modifications are

aj=0 for m=1, j=N,
m=2,i=1
m=3,j=1
m=4, i=N,
m=6,k=N,
m=7k=1 (B3.10)

for both reflective and extrapolated boundaries;
1 . .
al=-Zaf + = [h+h]he+ hJ[60 /iy + 8 1, /o]
mesS
1 ‘ .
+ [+ nJhes ho][8 0/ d) + B, 19 1on, |
: | | ‘
+ i+ hJih; + hed[ ks / Gims + B, /T, | (B3.11)
where 8,,=1 for n=m, 0 for n¥m, d'h,',s,‘_ are the boundary extrapolation distances in transport mean

free paths, with d =0.71for a free boundary and d = o for a reflective boundary and the appropriate h is zero
on an external boundary {e.g. h,=0 when i=N,).
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APPENDIX C

INCOMPLETE CHOLESKI DECOMPOSITION

Theorem. Let A be the matrix corresponding to the finite ditference representation adopted in appendix
3, then approximate decomposition of the matrix A = LDLT given by
j~1
ay - E P owdl ik for a;j$0
k=1

i

]

0 otherwise |

and -
di= 1§

esulls in a lower triangular matrix L, whose elements are
Iij = aij (l#j) .

Proof. The proof is presenied for the seven-point finile difierence representation corresponding to the
jiscretisation of the three spatial dimensional form. The resuit for fewer dimensions is established as portion
i the larger proof.

For the seven-point finite difference representation, the elements a; of the matrix A that are non-zero can
»ceur only in the following instances:

j=1 =

j=ix1 i=jt1
j=izxs or i=j%s
j=ix(s+) i=j%(s+t) ,

vhere s and t are given by s = N, and t = N, N,, for the ordering of ¢ used here. Now, because no infilt is
ermitted unless a non-zero element occurs in the corresponding posilion in A, the lower triangular elements
j are zero except for the following three cases:

) i=j+1,
(II) i = J +85,
(il) i=]+5a4i.

"he elements of L for case (i) are
)J=1
i = @jarj = I Tjarwdi Vi

rom the non-zero conditions applying to a, both |, and i x can be non-zero only for k = . Because this
ombination is excluded from the summation, it immediately follows that

ljar) = 8jur;

.ases (i) and (hi} {ollow in a similar {ashion
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APPENDIX D

PERFORMANCE TUNING PARAMETERS

The user of POW3D has the opportunity of setting several parameters which might influence the efficiency
with which a computation is undertaken. These are described now.

D1 CONTROL OF REGION REBALANCE

rbal r1.fara,0e 5 ls  an array used to specify the circumstances under which region rebalance might
be enabled or disabled.

1,1,2,1,1,1 are the default values used by POW3D.

Region rebalance is always disabled when the optimal extrapolation parameter {w), for the SLOR iterative
scheme is being determined. The user is able to unconditionally disable region rebalance at all other times
by specifying

rbal = 0,0,0,0,0,0 (or in more compact form rbal=6*0)

in POW3D data. The user, however, has the option of specifying controt in a finer fashion through a more
selective use of the six parameters available.

For example, rzand r; are used to specity limits on the group passes for which region rebalance is disabled.

If igpass represents the count of current pass through the various neutron groups for a particular inner
iteration, then region rebalance is disabled for

iQpass < rz or when igpass > 7
(The default is no region rebalance 1or igpass <1 OF igpass > 2.)

Region rebalance is also avoided for the following stages of outer loop convergence by setting the
appropriate flag to zero.

Stage Acceleration Error Flag
3 Power iteration b™ < acclam(3) rs=0
2  Chebyschev extrapolation b™ < acclam(2) and$ ¥ < accto(2) rs=0

4 <order<6
1 As above but more confident  b™ < acclam(1) and$ § < accfo(1) re=0

use 6 < order £ 10

Specitying, 74, 15 0r rs for the appropriate stage of convergence as 1, ensures that with other conditions
permitting, region rebalance is enabled for that stage of every outer iteration. The use of an other positive
integer permits region rebalance only if the outer iteration is a multiple of that integer. {i.e. r, = 3 permits
region rebalance for every third outer iteration, provided the converged process is in Stage 1).

Region rebalance is normally disabled for the first outer iteration, or after a restant. Should the user wish to
force region rebalance in these circumstances, r; must be set so that

r T accio(1) > 1.
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D2 CONTROL OF GROUP (ENERGY) REBALANCE

gbal g1.02.05040s5.0s an array used 1o specify the circumstances under which group rebalance might
be enabled or disabled.

1,1,1,1,1,1 are the default vaiues used by POW3D.
The user is able to unconditionally disable group rebalance at all times by specifying
ghat = 0,0,0,0.0,0 {or in more compact form gbal=6*0)

in POW3D data. The user, however, has the option of specifying control in a finer fashion through a more
selective use of the six parameters available.

For example, gzand g; are used to specify limits on the group passes for which group rebalance is disabled.
The default {see below), is that group rebalance is only applied for the first group pass of each outer
iteration. (Group balance is applied across all groups, when the first energy group with upscatters into it is
encountered.)

If igeass represents the count of current pass through the various neutron groups for a particular inner
iteration, then group rebalance is disabled for

igpass < gz Or when iQpass > g3
(The detfault is no group rebalance for igpass > 1.}

Group rebalance is also avoided for the foliowing stages of outer loop convergence by setting the
appropriate flag to zero.

Stage Acceleration Error Flag
3 Power iteration b™ < acclam(3) gs=0
2 Chebyschev extrapolation b™ < acclam(2) andS ™ < accfo(2) gs5=0

4 < order £ 6
1 As above but more confident 5™
use 6 < order < 10

acclam(1) and$ @ < accfo(1) ga=0

1A
A

Specitying gs, gs OF gs for the appropriate stage of convergence as 1, ensures that with other conditions
permitting, group rebalance is enabled for that stage of every outer iteration. The use of any other positive
integer permits group rebalance only if the outer iteration is a multiple of that integer. (i.e. g, = 3 permits
group rebalance for every third outer iteration, provided the converged process is in Stage 1).

Group rebalance is normally disabled for the first outer iteration, or after a restart. Should the user wish to
force group rebalance in these circumstances, g, must be set so that

g: * accfo(1) > 1.

D3 CONTROL OF UPSCATTER PASSES

The user is able to control the upscatier strategy of POW3D through use of the parameter nig. The
parameter consists of three numbers, each of which is made up of three separate two digit numbers
concatenated to form a six digit integer. The detfault values used by the code are

nig = 3*080201

Which of the three nig numbers is used, will be determined by the stage of the outer iterative process (as
used for region rebalance, section D1). For example, the first nig number is used when one is most
confident in the state of convergence of the process, and the third during the preliminary stage when
confidence is least. The state of convergence is determined by POW3D.
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For a selected state of convergence, the components of the appropriate nig entity are used as described
now by the rather pragmatic but effective procedure:
Consider a six digit entity

nig = nig, x10000 + nig, x100 + nig ;.

The number of upscatter passes i2 is determined

for real calculations for adjoint calculations
i2 =nig,
i1 = max (nig ,.1) i2 = nig,
j2 = nig, il = max (nig,.1)
2 =max (i2,j2) j2 = nig 3
2 =mg3+n9""95+"9*"95 i2 = max(i2,j2)
2 4
j2 = min{i2,j2)
2 =j2

where ng-ngs is the number of groups involved in the upscatter process and the integer division process is

performed as defined in FORTRAN. For example, a real 10 group problem with 6 upscattering groups
would take i2=]2=min(8,5)=5 upscattering passes at most.

A loop is set‘up to iterate over the groups with upscatier for at most i2 passes. Under the following
conditions, however, it is possible to take an eariy exit at the end of a loop pass for real calculations:

i. spatial convergence has been achieved for all groups,
ii. the maximum number of iterations for any group with upscatier is <l

For adjoint calculations, an early exit is taken when:

i. spatial convergence has been achieved for ali groups,
ii. atleast j2"upscatter” passes are completed,

i the maximum number of iterations for any group with “upscatter” is < il.

D4 SPECIFYING THE ACCURACY REQUIRED FOR SOLUTION OF THE INNER SYSTEMS OF
EQUATIONS

accfi  a,as two real numbers used to specify the relative accuracy of inner iterations,

0.07.0.1 are the default values used by POW3D.

The current accuracy of the overall process (raccfo) is computed in POW3D at every outer iteration and that
value (combined with accti) is used to determine an accuracy 10 which the linear equations will be solved
when one of the various linear equation solving strategies is emploved. The accuracy is set.

raccio ™ &, for two-dimensional problems,
for three dimensional problems solved with iccg,
for planes of a three-dimensional problem solved with slor or mini,
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raccio*a; for the third-dimension solver (slor or mini) when a two level inner solution strategy
(e.g. minimini) is employed.

D5 SPECIFYING THE MINIMUM NUMBER OF ITERATIONS FOR ITERATIVE SOLUTION OF LINEAR
EQUATIONS

Irrespective of convergence having been obtained for the iterative solution of the linear Systems of
equations, POW3D will force a minimum number of iterations to be performed before an exit from that loop
is permitted. The rules for the three iterative methods mini, slor and iccg are slightly different. The ruies
for mini were given in section 9.3. The parameter minin{(3) specifies the minimum number of iterations
that must be taken before an exit is permitted. The same parameter is used to control the exit procedure for
iccg.

For slor the situation is far more complicated, this is due primarily for the need to compute a good estimate
of the over-relaxation parameter whilst the iterative system is being solved. The following pragmatic
algorithm is used and the user is able to exert some influence through the parameter minit.
minit My, mzms three integer numbers through which the algorithm is controlled,
50,10,2 are the default values used by POW3D.
Let Min, be the minimum number of spatial iterations that must be performed.
If the over-relaxation factor is not determined
Min, =m,; forthe first pass (first outer and first inner)
=mp other passes
POWS3D will calculate Min,, if Min, determined by the above rules is zero. This
would not appear to be a wise option for the user to force, as the calculation is based

on the eigenvalue estimate which is unlikely to be accurate if the over-relaxation factor
has not yet been determined accurately. (See section 9.8 on acclam.)

if the over-relaxation factor is determined

Min, = ms however, an exit is not automatically aliowed on the first iteration even if ma=1 is specified.
Under that condition the exit test is carried out on a previously POW3D computed limit
(it not a restart) or a currently computed POW3D limit (if a restart).

When POW3D calculates Miny it is aiways bounded m, > Min; > ms.

D6 MORE ON SPECIFYING ACdURACY FOR TERMINATION

In sections 9.7-9.8 the issue of stopping criteria was introduced. The user has two parameters acclam anc
accfo though which control over convergence and stopping may be exerted.

accto a,,8z83 are used for the three stages of convergence already described,
1.E-4,1.E-3, 1.E-2 are the default values.

The parameter accfo is used primarily to test for convergence on local fission accuracy where it alsc

determines the stage of convergence. The paradigms adopted to converge the calculation in each stage

are rather different. The parameter is also used in the decision strategies for region rebalance and the
component a; in limiting the accuracy demanded by POW3D of the linear equation algorithms.
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acclam a1, 821,831 are used for two purposes in the three stages of convergence.
12,822,832
are the default values.

The first tripple ;1,821,853 are the values of acclam freated in sections 9.7-9.8 and are directed at
achieving overall neutron balance in the calculation.

The second tripple are used in determining convergence at each stage of the dominance calculation.

D7 ESTABLISHING AN ESTIMATE FOR THE TRIAL FLUX

Where a trial flux is computed to commence a POW3D calculation, the shape of that flux may be
influenced by the use of two parameters:

trilx  tq.1,
0.,0.975 are the default values used by POW3D.
The parameters are used o “harden” the cos function used to approximate the Bessel function

cos(t, * ws)

cos({ws) * cos{c * ws} * ——————,
cost, * ws)

where ws and ¢ are appropriate arguments.

D8 ITERATION LIMITS

nol the maximum number of outer iterations permitted before the code decides convergence has not
been achieved (defauit 100).

nil the maximum number of inner iterations permitted before the code decides convergence has not
been achieved (default 100).

DS CONTROL OF DOMINANCE DETERMINATION

The dominance ratio is determined by the code and its value is the parameter underpinning the Chebychev
acceleration method used in POW3D. A determination of this parameter 10 a suitable accuracy is an
involved procedure and the user may influence the strategy of the calculation through:

nop  nopy, Nopz nNop;

where the appropriate element of nop selected is determined by the stage ot convergence achieved (as
identified in section C1). Each element itself consists of two components concatenated through

nop; = ny > 100 + ny.

The number ot outers iterations that must completed before dominance is recalculated is given by np, whilst
the maximum number of ouler iterations permitted before dominance 1s recalculated is n,. The default
values used are

nop 1008, 0604, 0404,
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D10 CONTROL OVER OMEGA DETERMINATION (SLOR METHOD)
somega initial value used for w.

The initial value of @ used in the slor iterative solution algorithm for the solution of systems ot linear
equations is specified in somega. The default used in POW3D is 1.

acomg2 controls the accuracy in estimatingw .

This is the square of the accuracy that is required for the determination of an updated value of w.

D11 CONTROL OVER MINI GAMMA LIMIT

The upper y limit (section 6.3), applied to the mini iterative method (in energy alone) may be altered
through the parameter sgamit. The default settings (an upper y limit of 1} are

sgamit 1000*1.
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Disjunciive partitioning of coarse grid for 4 subdomains Dp,
Figure 2
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Coarse mesh grid for pyramid partitioning
Figure 3



-56-

EIVE]

-4
uoijesbajul jo uoibas Buimoys Wl
pufl sousiayip alui4 4-€ % M
£ < s/
| 4 Zy Va
_ 00! 000 /
, 002 | \
= %
u e \
P - VA Y. 2
z / 71
'y a 7
0zZ1 dun o)/ | 100
102 A '
ff —— = BAT Lo
_ | s
®I||||I.|...l.|||..l...|_1.. H :l...ni_lsl...]._ﬁluull ||||| &
e AN /| uo Z »
A1 L _ N 5o A
|| 7 RSN
L/ FA V|
I ‘NPNIATII d Z00
12z 2] |}¢0 |
7| | |
v/,
1 |
y 47 au ¢io
/ _ | _
4 _ | _
\\ —
ez Ze | 220
v
o _
R _
&



