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ABSTRACT

A range of random packings has been prepared in a prismatic vessel with a plane vertical
transparent wall, simulating a semi-infinite vessel. Observations have been made in the outer

region of the packings, using and extending the experimental method described in Part I of the
series.

The three-dimensional model presented in Part IIT has been extended to the outer region
of unbiased packings in such a vessel. Equations from Part III are used, together with some of
the properties of the regular arrays not previously considered.

The rhombohedral and cubic arrays are shown to be members of a family of regular arrays,
some of whose properties agree closely with experimentally determined properties of unbiased
random packings over the range normally obtained in practice.

The model is also shown to be in fair agreement with observed properties in the outer
region of the loosest random packings prepared in the laboratory,enabling estimates to be mafle
9f some of their properties in the central region which have not so far been determined experimentally.

The two-dimensicnal model presented in Part III is alsn extended to the outer region, and
the computed results are supported by a limited experimental study.




PREFACE

This report is a part of a series on ‘‘Some Geometrical Properties of Packings of
Equal Spheres in Cylindrical Vessels®’ as follows:

Part 1 Exploratory Study of Random Packings in Small Vessels.
G. A. Tingate, AAEC/E208.

Part II The Cylindrically Ordered Packing.
F. A. Rocke, A.A.E.C. report in preparation.

Part III Basic Model away from the Influence of Wall Effects.
N. W. Ridgway, G.A. Tingate, AAEC/EZ202.

Part IV Extension of Model to Outer Region of Semi-infinite Vessel with Plane Wall.
G. A. Tingate, this report, AAEC/E223.

Part V. Adaptation of Model to Packings in Cylindrical Vessels.
G. A. Tingate, A.A.E.C. report in preparation.

Part VI Discussion and Conclusions.
N. W. Ridgway, F. A. Rocke, and G. A. Tingate,

National Library of Australia card number and ISBN 0 642 99443 9 A.A.E.C. report in preparation.
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1. INTRODUCTION

In 1966 the Australian Atomic Energy Commission completed a feasibility study of a high
temperature gas-cooled reactor system based on a pebble bed concept, using spheres of fuelled
beryllium oxide. The work reported here is part of a study of the structure of random packings of
equal spheres made in support of this project.

Part [ of this series gives an account of an exploratory study of such packings, in terms
of two regions and three sphere categories (see Figure 1). Most of the supporting experiments
were with a cylinder-to-sphere diameter ratio (D./D,) of 5.717, but equations were derived for
estimating some of the properties of packings with larger ratios. The study showed that a con-
tinuous range of unbiased random packings is possible. With large D,/ D, ratios, the mean void
fraction of the central region can range from 0.36 to 0.42, correspending to a range of occupancy
factor® of the spheres in the central region OFc of 0.86 to 0.78. Variations in the outer region
are much greater. The range for the spheres touching the wall OFy in unbiased packings is 0.88
to 0.72; and for the intruding spheres OF; it is 0.79 to 1.50.

In Part IIT a model was developed for the central region of packings in a semi-infinite
vessel, on the basis that they are generated by an expansion process starting with the rhombo-
hedral airay. Equations were derived for the properties of interest, including one for the mean
void fraction ec in terms of the mean number of points of contact n¢, namely:

T

1--€C=—*___~_ o (1)

,3(12 - “_c)
2

This equation and various points of interest are plotted in Figure 2.

A model was also developed in Part III for two-dimensional packings (see Figure 3). The
observed properties of the spheres touching the wall in the three-dimensional packings have been
checked against this model, but it is quite inadequate to account for the observed range. The two-
dimensional model gives a minimum value of OFy of 0.866, that of the square array, whereas. values
down to 0.7 can be readily obtained with three-dimensional random packings. This would imply

that the properties of the outer region are functions of the central region, and that a common
£Xpansion mechanism holds throughout the packing.

In the following, therefore, the model for the central region is extended to the outer region
of a semi-infinite vessel. Several guidelines for such an exteasion can be obtained directly from
the model itself, and it is appropriate to summarise them here.

The model is completely defined at the dense erd of the range in terms of the pioperties
of the rhombohedral array. At the loose end it is partly defined, in that it gives the mean void
fraction of the cubic packing, 0.4764, when n. = 0. However this does not correspond to a real
packing, nor is it likely that this void fraction can be approached with random packings, partly
because a high degree of ordering would have to develop and partly because the cubic array is
structurally unstasie, Although further experimental studies might provide a good estimate of the
properties at the loose limit of the range, the desired definition would still be lacking unless the
theoretical properties of the loosest possible random packing were known.

observed volume of spheres
volume calculated for densest possible packing

* occupancy factor =




No mention of such a packing or its measured or calculated properties could be found in
the available literature, and it is beyond the scope of this study to attempt to establish them by
direct means. However, two alternative criteria can be postulated for the route leading to this
limiting condition. The first is that the properties of the central region of all unbiased random
packings conform with Equation 1. The second, based on stability considerations, is that the
number of points of contact should remain at or close to 6 when €. is less than 0.3954.

Neither criterion offers any guidance for the determination of a practical end to the
expansion process. However, if the first alternative were to hold, the mean number of points
of contact would be significantly less than 6, and perhaps an integer. Integral values of nc less
than 4 would not be expected, so it would appear from Table 1 that the most likely limit of €,

would be 0.4264 on this basis.

TABLE 1
MEAN VOID FRACTIONS COMPUTED FROM EQUATION 1

Nc €c

6 0.3954
5 0.4115
4 0.4264
3 C.4402
2 0.4531

Further guidelines are provided by the experimental results from Part I, for both the central
and outer regions, even though they are for small cylindrical packings. The correction for the curva-
ture of a cylindrical wall is only about 1 per cent for a D, /D, ratio of 5.77, and so these results
provide a fair check for any extension of the model to the outer region of a semi-infinite vessel.
From the results given in Part I; the limiting value of OF,, should be substantially less than 0.7,
while from the two-dimensional model the mean number of points of contact between spheres touch-
ing the wall should be less than 3 and possibly an integer,

In the following. two distinct approaches have been adopted. Each leads to a model which
accounts for some of the properties or trends observed for the two regions and the three sphere
categories over the range of unbiased random packings prepared in the laboratory. The first approach
is to adapt some of the three-dimensional equations from Part III to the essentially two-dimensional
outer region. The resulting model is in fair agreement with observed values. It also gives a prac-
tical end to the expansion process in the outer region, and enables some of the properties of the
loosest possible random packing to be estimated. The second approach makes use of relationships
between prcperties of the rhombohedral and cubic arrays not considered in Part IfI. The relation-
ships are also found to hold over a continuous range of intermediate regular arrays. Some of the
properties computed for these arrays are found to agree closely with those observed in unbiased
random packings. A composite model is then developed from the two, with a final adjustment to
conform with observed properties in the outer region of the loosest packings prepared in the labora-

tory. This enables some of the properties of the central region of the loosest possible random pack-
ing to be estimated.

The further extension of the composite model to packings in cylindrical vessels is reported
in Part V.

—_—

2. FIRST APPROACH — MODEL BASED ON EQUATIONS FROM PART III

2.1 Basic Concept

A dense regular array is assumed to expand by the progressive breaking of points of con-
tact and the.further separation of the spheres where they have broken contact. It is assumed
initially that there is no distinction between sphere-to-sphere and sphere-to-wall points of con-
tact, tc the extent that breaking and separation occur at the same rates.

A common expansion mechanism would give rise to quite different effects in the two
regions of the packing. The breaking of a point of contact in the central region would have no
effect on OF , and the affected spheres would remain in the same category, while any increase
in the mean distance between the centres of adjacent spheres would have a distance-cubed
effect on OFc. However, the breaking of a point of contact at the wall would result in the sphere
beceming an intruding sphere, affecting both OF,, and OF,*. The breaking of a point of contact
between adjacent spheres touching the wall would have no effect on OFy, or that sphere category,

while any increase in the mean distance between their centres would have a distance-squared
effect on OFy .

No criterion could be postulated on this basis for the termination of the expansion process
for the spheres in the central region or for the spheres touching the wall. In the case of the intrud-
ing spheres, however, two opposing effects govern changes in OF;. At the start of the process the
effect of expansion is rudimentary, so that the spheres breaking contact with the wall give rise to
a net increase in OF; . As more and more points of contact break, the expansion process compounds,
so a limiting value of OF; must eventually be reached where the two effects counterbalance. If the
mechanism were to hold throughout the packing, and all three sphere categories were to reach the
loosest possible condition together, then a model developed on this basis would enable the properties
of the loosest possible random packing to be calculated. Even if the rates of breaking and separation
in the two regions were not the same, it would be possible to adjust for this after making the appro-
priate experimental observations over the practical range of random packings.

2.2 Application of Basic Concept

2.2.1 Initial conditions

The first terms of the model are given in Table 2. They are derived directly from the
properties of thz rhombohedral array by considering a portion with 10,000 spheres of unit diameter
touching the (plane) wall in a close packed triangular array.

2.2.2 Expansion process

Expansion is treated as taking place in steps, such that with each step one sphere breaks
contact with the wall, and the other points of contact break at the same rate throughout the packing.
In this way related properties of interest can be computed at intervals over the range of packings so

represented. In the following, the i-th terms (resulting from i -~ 1 such steps) are derived on this
basis.

The number of spheres touching the wall is given by
n; = 10,000 =(i~1) = 10,002 —i . | (2)

In the central region we have

1. N
Ne, = 12 ! = o . o (3)
i ( 10,000 ) 0.0012 n;

* The physical existence of this part of the expansion process can be demonstrated by vibrating
a loose random packing in a transparent vessel. Intruding spheres can be seen to move outwards
and many of them eventually touch the wall. The mathematical treatment presented here is the

reverse of this process, so chosen because the dense end of the range offers a completely defined
starting point.




TABLE 2

FIRST TERMS OF MODEL

PROPERTY SYMBOL VALUE OR EXPRESSION

Mean number of points of contact between spheres in| n, . 12
central region

M id f 't' f central regi € 1—- —— = 0.259520
Mean void fraction of central region Cq Yo
Mean sphere volume in unit volume of central region Veu, -7 = 0.740480
(or occupancy fraction) ' 32

Occupancy factor of central region OF, 1.0

Mean radial distance between centres of adjacent Pc, 1.0

spheres in central region i

Volume of unit cell in central region (i.e. volume Vuce, L. 0707107
associated with each sphere) i 2

Mean number of points of contact between spheres Ny, 6

touching wall

Mean volume of spheres touching wall in unit Viu, . = 0.604600
volume of outer region 33

Occupanﬁy factor of spheres touching wall OFy, 1.0

Mean radial distance between centres of adjacent Py, 1.0

spheres touching wall

it cell i ion (i 8 . 0.866025

Volume of unit cell in outer region (i.e. volume Vucol - = 0.8
associated with each sphere touching wall)

Volume of sphere Vv, —g— = 0.523599
Number of spheres touching wall n; 10,000

Volume of spheres touching wall le n -V, = 10,000 V,
Volume of outer region Vor, n;Vyco, = 10,000 Vyco,
Volume of intruding spheres VIl ( %EZ_ _ 1) le = 0.088662 Vy
Mean volume of intruding spheres in unit volume of Viu 0.053605
outer region :

Occupancy factor of intruding spheres OF;, 1.0

Mean void volume available for intruding spheres in Vi 1-Vou = 0.395400
unit volume of outer region ' '

Filling ability of intruding spheres FA[ Vi, Vyry, 0.135572

5

The term €c; is obtained from Equation 1, while the mean radial distance Pc; between the
centres of adjacent spheres is obtained by rearranging terms in Equation 11 of Part III to give

nc. \ L
Pc;, = (2 - —1%) 6 . (4)
Expressions for the other properties of interest in the central region are:
1-—ec,
OFCi = 1 — Eci (5)
V
Vv = Uucc; (6)
ucg; OF.,
VT
and Ve, = — — . 7
CUi 6 Vyce, ™

In the outer region several possibilities present themselves, for example whether the vacancies
left by spheres breaking contact with the wall are subject to expansion or contraction. The basic

model was derived in the simplest possible terms, so the vacancies were treated as being subject
to expansion.

Even on this basis the equations for ny and o are not similar in form to Equations 3 and 4,
since they are governed by the effects of both sphere-to-sphere and sphere-to-wall points of contact.
Instead they are determined indirectly by introducing the terms nyg and pyg, obtained by two-

dimensional expansion alone. The equations for these two terms are the equivalents of Equations
3 and 4, namely:

n.
i A | (8
ws, = 6 (10?000> 0.0006 ; 8)

n

and 1

1
A A P N 9
(2 12> (2 10,000) ° ®)

The volume of the outer region associated with the spheres touching the wall increases
with the oy, giving

’OWEi

ye! 2
Vor, = Vom, (p:§i> . (10)
1

Similarly, if it is assumed that the intruding sphetes are governed by the three-dimensional
expansion process once contact has been broken with the wall, then

_ Pc 3
Vio = Vi, (pc‘jl) £V, . (11)

The decrease in ny is the product of two effects, the breaking of points of contact at the

wall and the breaking of points of contact between the spheres remaining in contact with the wall.
Since the two effects are equal,

n; 2
T n“’l(lo 000) " (12

| Expressions for the other properties of interest in the outer region are:

Vwi = ni 'Vp (13)

V'ORi

n;

VU co; ~ (14) .




m 15)
Veu, = (
o 6VUCOi
VUC01
_ (16)
OFWi VUCOi
_ IOFWI (17)
P, OFy,
v,
Vi, = V‘__ (18)
OR;
OF - Wi (19)
' Viuy f
Vyiw; = 1-=Vyy (20)
Vi,
and FA; = i (1)
: Wiy,

This was the basis for computations, with enough steps to cover the known range of random
packings and to go weli beyond any loose practical packing which could be postulated.

The computed values of OF were excessive for given values of OFy, particularly at the
loose end of the range. The spheres in the central region must therefore expand at a greater rate
than assumed, implying that there must be a distinction between the sphere-to-sphere and the
sphere-to-wall points of contact. The values of OF; were also excessive for given values of OFy ,
hence the intruding spheres must also expand at a greater rate than assumed. Limiting values were

not obtained for V; or for any related term, but this is to be expected when the expansion rate is
underestimated.

2.2.3 Modification of basic concept

The relative rates of expansion of the three sphere categories were made to vary by intro-
ducing to the appropriate equations coefficients whose best values could be computed by trial and
error. Many possibilities had to be considered, and limited experimental information was available
to compare with the computed results. The study was therefore restricted to constant coefficients
at this stage, whereas they were subsequently found to vary over the range. Even so it was possible
to improve the model, by making the following changes.

Spheres touching wall:  One shortcoming of the basic concept is that the vacancies left by
spheres which have broken contact with the wall are made to expand at the same rate as the rest of
the packing. Inspection of the outer region of loose random packings indicates that the vacancies
contract. This offers an independent method of computing a limit to the expansion process. At the
start, changes in OFy are dominated by the (two-dimensional) expansion, since the effect of the con-
traction of vacancies is rudimentary, The contraction effect compounds until a limit is eventually
reached where the two effects counterbalance.

EVENCTORE R SO

These effects were computed by treating Vor, the volume of the outer region, in two parts,
Vore subject to expansion and Vorc subject to contraction. Thus initially

VOREI VORI = 10,000 VUC01 (22)

and Vore, = 0 (23)

-7

The first computations were made on the basis of Vorc contracting at the same rate as
Vore expanded. However, OF;. failed to reach a limiting value. The rate of contraction was

therefore increased by introducing a coefficient Cy and replacing Equation 10 by the three equa-
tions

Pyg. 2

Voxre, = Vore, 1( = ) — Vyco, (24)
’OWEi.l
1 - Cy(oyg, - 1)

VORCi = ORC1_1( il sz ) Vucol (25)
1 - Gy(powg 1)

and
VORi = VOREi + VORCi (26)

The modified equations gave a limiting value of OFy of 0.6464 when Cy = 6.0. The physical
significance attributed to this is that each sphere receding from the wall makes way for six neighbour-
ing spheres. Since it is physically impossible for all six sphetes surrounding a vacancy to move
inwards, the implication is that the effect is felt at least two sphere diameters from the vacancy.

It should be noted that there are several other interpretations of the criterion that Vogc con-
tracts at six times the rate that Vop expands. Seven of these were computed. Six failed to give
a limiting value of OFy in the range 1.0 to 0.5, while the seventh gave a limiting value of 0.7,
which was shown by subsequent experiments to be too high. Equation 25 and the other six gave

values of OFy in close agreement over the range 1.0 to 0.7, which covers the range of random pack-
ings normally obtained in practice.

At this point several trial adjustments were made to this part of the model, some of which
might be said to make it more realistic, but all were unsuccessful. For instance, it might be
thought that the contraction factor for the vacancies at the wall should diminish progressively
with the mean number of sphere-to-sphere contact points. However, when computations were
repeated with a contraction factor which was made to diminish at the appropriate rate, OFy failed

. to reach a limiting value. The many variations considered to this point had therefore been narrowed

down to one possibility, giving, as anticipated, a limiting value of OFy significantly less than 0.7.

Spheres in central region: The rate of expansion of the spheres in the central region was
altfered by making their points of contact break at a rate greater than that of the sphere-to-wall
points of contact. A coefficient C. was introduced into Equation 3, to give

ne, = 0.0012 Ce n;

1

27)
and the properties of the central region were recalculated on this basis.

As stated in the Introduction, the most likely limiting value of OFy at the loose end of the

range was considered to be 0.4264. This value, corresponding to the limiting value of OFy of
0.6464, was obtained by putting C. = 1,389.

Intruding spheres: Computations were based on the intruding spheres expanding at various
rates greater than that represented in Equation 11. A range of limiting values of OF; was obtained,
but all fell within the known range of random packings. The assumption that the intrnding spheres
are subject to the three-dimensional expansion process was therefore discarded. Even if the three-

- dimensional process weré known to hold, its application to the outer region would not be as straight-

forward as is implied by Equation 11. This is because the effect would appear partly as a two-
dimensional expansion process and partly as migration to the central region as the spheres receded
from the wall, In any event, the intruding spheres in close proximity to the wall are clearly con-
strained by the spheres touching the wall. It is therefore more appropriate to regard the intruding
Spheres as being governed initially by the same two-dimensional expansion process as the spheres

touching the wall and progressively escaping this inflnence as they move further into the central
region,




Equation 11 was therefore replaced by

4 / Vico. .\ ‘
V.=V, {11~ L9 /c_)+ v, (28)
11 Il—l (\ \ VUCOi ) ! 4

The coefficient C; is the fraction of the total expansion attributable to the two-dimensional
expansion process, the remainder being attributable to migration to the central region. Equation 28
overcomes the further deficiency that V; is not directly related to Vo and Vo in Equation 11.

None of the computations with various values of C; gave a limiting value of OF;. Use was
therefore made of the experimental results for a D, /D, ratio of 5.77, reported in Part I. The values
of OFy and Vi /Vy of the Jeosest packing were respectively 0.721 and 0.183 and the values for a
similar packing in a semi-infinite vessel were expected to be much the same. The model was there-
fore adjusted to give these values, the value of C, being 0.1396. ‘

2.2.4 Check of model against available experimental data

Experimental values were not available to check the model directly, so the results from
Part I for a D, /D, ratio of 5.77 were plotted in Figures 4 and 5. From Figure 4 it can be seen
that the values of OF. computed for the semi-infinite vessel fall well away from the experimental
points. This is in part because the thombohedral array is not the appropriate starting point f?r tpe
expansijon process in a cylindrical vessel, even for an infinite D, /D, ratio. The starting point is
the cylindrically ordered packing, which forms the subject of Part II (Rocke 1972). The properties
vary with D,/D,, as indicated in the following table.

TABLE 3
COMPARISON OF PROPERTIES OF RHOMBOHEDRAL ARRAY AND

TWO CYLINDRICALLY ORDERED PACKINGS

OFy OF¢ Vi /Vy
Rhombohedral array 1.00 1.00 0.089
Cylindrically ordered packing
Dy/Dp infinite 1.00 0.96 0.061
D,/D, = 5.77 0.69* 0.86% 0.036*

The computations were repeated on this basis, still being made to agree with the semi-
infinite model at the loose end of the range. This was achieved by putting Cc = 0.64 and
Cy = 0.15.. The computed relationships are plotted in Figures 4 and 5. Agreement with
observed values was considered sufficiently close to justify an experimental programme to check
the semi-infinite model.

2.3 Experimental Testing of Model for Semi-Infinite Vessel

2.3.1 Central region -

The model is based on Equations 1 and 4 and makes use of them directly and unchanged
for computing the properties of the central region of random packings. This part of the model there-
fore agrees with experimentally determined values as reported in Part II1 %%

* Preliminary estimates only; corrected values are derived in Part.V.

**This does not imply that the computed relationship between OF. aud OF, is correct.
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A detailed experimental investigation of the central region was not attempted. This was
partly due to the time and effort required with the prismatic vessels used to represent the semi-
infinite vessel, but chiefly because a detailed experimental investigation was already under way
with cylindrical vessels. Experimental determinations of the properties of the central region of
packings in large prismatic vessels, large, that is, with respect to sphere diameter, were therefore
limited to the overall properties of the loosest obtainable packing. A Perspex vessel 5 in. x § in. x
3% in. high was prepared for use with 3 mm precise glass spheres. A lcose packing was prepared
by inserting a liner of internal dimensions 4 in. x 4 in. x 4% in. high, filling with spheres, and with-
drawing to allow the spheres to ‘expand’ into the vessel. This was repeated several times, and the
loosest packing so prepared had a mean void fraction in the central region of 0.423. This is in close
agreement with the value of 0.422 reported in Part I for cylindrical vessels.

2.3.2 OQuter region

The model was readily amenable to experimental testing in the outer region, along the lines
of the method reported in Part I. A prismatic vessel 24 in. ¥ 6 in. x 24 in. high was prepared for
use with 1 in. diameter spheres. The front plane wall was transparent; giving a test area 16 in. x
16 in. away from edge effects. It was marked with a 4 in. square grid. on the inner face to minimise
parallax errors. Two types of sphere were used in turn; machined aluminium and bonded zircon sand.
Most of the experiments were carried out with the aluminium spheres because of their superior preci-

sion and uniformity of shape. The zircon spheres provided confirmation that surface roughness had
little or no effect on the structure.

Random packings were prepared over as wide a range as possible. The loosest packings
were prepared by placing a 1 in. thick board against the inside face of the transparent wall, pouring
in the spheres until the vessel was slightly overfilled, and withdrawing the board. The denser pack-
ings were obtained by vibrating down such packings.

In each case a visual determination was made of OF, V; and ny. It was found essential to
use a spotlight and a magnifying glass to distinguish between contacts and near contacts. Selected
packings were then unpicked carefully for a determination of V; as described in Part I. During unpick-
ing it was usually found that a few of the spheres previously judged to be touching the transparent
wall were in fact just clear of it, and the record was adjusted accordingly.

The average value of OFy of the loosest packings was found to be 0.615. A determination
of V; was made for the loosest of these, with a value of OFy of 0.600. Observed values of V, /Vy
are plotted against OFy in Figure 5, where it can be seen that the model is in fair agreement for
values of OFy down to about 0.7.

Experimentally determined values of ny are plotted against OFy in Figure 6. It can be seen
that they lie well away from the computed curve except at the loose end of the range, and run into
the two-dimensional curve* at about ny = 4.

* This is derived as follows:

1-¢. = S — (from Figure 3)
2 /5- Ny
3
1 - eé . ey
OFy = (by definition)
(1 ~ €%) Rhombohedral
-
VS5 - 3
Hence OFy = =
5 _ fw
3
3
from which = 3 (5 - )
v "7 oR/



The scatter of the experimental points at ny = 4 is probably due to the smaller test area
in the case of the denser packings. It was found impossible to prepare dense packings over the
full test area, even with combined heavy vibration and poking. It was just possible to prepare
the denser packings by vibration when the vessel was half filled, permitting observations over
the bottom quarter of the test area only. Scatter is unavoidable due to the comparatively small
number of spheres touching the wall, about 70, and also to the tendency for a single near-regular
cluster to dominate over the reduced test area (see Figure 7). With large test areas several
clusters can be seen to form with different orientations and slightly different occupancy factors.

It might be possible to prepare packings with ny greater than 4 by jolting hand packed rhombo-
hedral arrays, but this was not attempted. However, visual examination of the structure of packings
with ny = 4 and greater (see Figures 7 and 8) left little doubt that the two-dimensional curve
would be followed between ny = 4 and ny = 6. The intruding spheres had all been forced either
to the wall or to a distance from the wall approximately the same as for the rhombohedral array.
The spheres touching the wall were clearly approaching the density and paitern of the rhombor.
hedral array. They would therefore behave essentially as a two-dimensional packing as densifica-
tion proceeded to its conclusion. The number of intruding spheres was the same as the number of
spheres touching the wall, as is the case with the rhombohedral array.

The compliance with the two-dimensional curve at the dense end of the range is at variance
with the assumed common expansion mechanism. The implication is that the spheres touching the
wall spread initially in two dimensions, thereafter the sphere-to-wall points of contact break and
the assumed common expansion mechanism holds. The model can be adjusted for this by making

it conform with the two-dimensional curve from ny, = 6 to. ny= 4, without changing the relationships
between the other terms.

These points indicated the need for adjustments to the model on the basis of the experi-
mental results. Before doing so a new analytical approach was investigated in the hope of finding
more definite relationships over the whole range. This led to a second model, which did not call
for a knowledge of the mean numbers of points of contact between spheres.

3. SECOND APPROACH — MODEL BASED ON PROPERTIES OF REGULAR ARRAYS

The relationships established in Part III for the central regions of the regular and randor.n
packings were considered to be sufficiently well matched to justify resuming the search for similar
relationships in the outer region. There was still no reason to change from an expansion process
starting with the known properties of the two regions at the rhombohedral end of the range, but it
was clear that observed properties of random packings could not be explained in terms of the
properties of tha cubic array considered so far. The key to the problem was found to lie in some
of its other properties. All previous considerations are based on the conventional orientgtmn,
which is but one of two axisymmetric orientations. These can be visualised by considering a .

2 x 2 x 2 element of a cubic array containing 8 spheres. If it is placed on a horizontal surface in
the conventional orientation, two horizontal planes may be drawn through the centres of the spheres,
each plane containing 4 centres. If the element is rotated through 45° about a horizontal edge, it
assumes a position which is not axisymmetric. Three horizontal planes may now be drawn through
the centres, containing 2, 4 and 2 certres respectively. The distance between adjacent planes is
D,/N2. If the element is next suspended from a corner, it assumes the second axisymmetric
orientation. Four horizontal planes may now be drawn through the centres, containing 1, 3, 3 and

1 centres respectively. The distance between adjacent planes is D, /3.

We call this configuration the tilted cubic array. (See Figure 9). The spheres in a given
horizontal layer are in an equilateral triangular lattice and the distance between the centres of
adjacent spheres is D, /V2. When a semi-infinite tilted cubic array is placed with its outer layer
against a plane wall, OFy is 0.5. This is consistent with the fact, noted in the Introduction, that
OFw in practical three-dimensional packings can be much less than that of the now irrelevant
square array.

An interesting physical relationship exists between the rhombohedral and tilted cubic arrays.
If the layers of the blocked passage® rhombohedral array are visualised as being squeezed together,

B e AR R sV 8 S o i

* Two variations of the rhombohedral array exist, commonly designated clear passage and blocked

passage. With the former the structure repeats itself every two layers; with the latter, every
three layers.
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with the spheres in each layer maintaining an equilateral triangular configuration as they separate,
the tilted cubic array will eventually be reached. The process can be continued further, finally
terminating when spheres which are vertically above one another make contact, that is, when the
spacing of the layers is one-third of the sphere diameter (see Figure 10). The mean void fraction
of this array is 0.3198. In the process a continuous range of regular arrays has been generated,
which we will call the blocked passage equilateral triangular arrays. The properties of these
arrays can be readily computed over the whole range, in terms of any convenient parameter, for
example the spacing of the layers, as can be seen from column 6 of Appendix 1.

When the same process is applied to the clear passage rhombohedral array, a continuous
range of clear passage equilateral triangular arrays is generated. An array is eventually reached
which is equivalent to the tilted cubic array. Many of its properties are the same, though it has
a different structure, as car be seen from Figure 11. The process can also be continued further,

terminating when the spacing of the layers is half the sphere diameter (see Figure 12). The mean
void fraction of the central region of this array is 0.4626.

It should be noted that these arrays are all structurally stable. The unstable nature of the

cubic array in its conventional orientation is not, therefore, necessarily a factor limiting the expan-
sion of random packings.

Interesting relationships exist between the geometrical properties of the rhombohedral and
and tilted cubic arrays. All are functions of a variable m, where m = 2 for the rhombohedral array
and m = 4 for the tilted cubic array. This gives rise to the possibility that the geometrical properties
of random packings in a semi-infinite vessel might also be functions of m*.

General expressions in terms of m are given in column 7 of Appendix 1. They are derived
directly from the expressions in column 6. From inspection of the values of € in columns 3, 4 and
5, it might be assumed that m would be 3 for the ‘normal’ random packing. This is not so; as can
be seen from column 7 the general expression is

T 2 1
lm—€c = = * — - (29)
373 m J1- _1161_
not
i
l—ec = — (30)
¢ 3m
The value of m for the ‘normal’ random packing is found by solving the equation
_JE: L2 1_ . 7}’_ , (31)
3N3 m m 343 _
1-%

from which

m? (1— %) - 4 , which gives m = 2.694503....

Equation 29 correctly gives a minimum value of 0.5236, corresponding to the cubic array (m = 4),
while Equation 30 does not.

The OF. - OFy, relationship for the equilateral triangular arrays is plotted in Figure 13.

The relationship computed from the first model is also plotted, and the two are in general agreement,
though requiring further reconciliation.

*Note: Although the mean void fraction of the central region of the ‘normal’ random packing is the
same as that of the orthorhombic array, the latter is not one of the equilateral triangular arrays, and
€quivaient relationships do not apply in the wall region.



The V, /Vy — OFy relationship for the equilateral triangular arrays is plotted in Figure 14.
The relationship computed by the first model is also plotted, together with the experimentally deter-
mined points. Agreement is good at the dense end of the range, but the experimental points fall
above the curves over most of the loose end of the range.

4. THIRD APPROACH — COMPOSITE MODEL

The OF. — OFy and V; /Vy — OFy relatiouships for the equilateral triangular arrays
were incorporated in the first model, enabling the (variable) values of Cy, C¢ and C, to be computed
directly by rearranging terms in Equations 25, 27 and 28. The adjustments outlined at the end of
Section 2 were also incorporated. OFy was made to reach its limit at the observed value 0.615, by
expressing Cy as a linear function of i, and retaining the value 6.0 at the dense end of the range.
The computed values of the terms of main interest are tabulated in Appendix 3. It can be seen that
Cy remains almost constant over the range, as was indicated under Section 2.2.3. It can also be
seen that the maximum value of C; is only 0.166, early in the expansion process, and diminishes to
zero at the loose end of the range. This adds weight to the argument that changes in OF; are dom-
inated by migration to the central region, with a comparatively small initial contribution from two-
dimensional expansion in the outer region. It is also apparent that C; must fall to zero for a limit-
ing value of V; /Vy to be obtained. This accounts for the failure of any constant value of C;to
give a limiting value, as reported at the end of Section 2.2.3. It is also of interest to note that the
computed values of FA, vary by about 11 per cent over the range and only 4 per cent over the range
of random packings normally obtained in practice. This agrees with the observation, reported in
Part I, that V; increases linearly with decrease in Vy.

The computed ny — OFy relationship is plotted as the broken curve in Figure 6. There is
no obvious discrepancy between observation and calculation within the accuracy corresponding to
the scatter of the experimental points.

5. INVESTIGATION OF DISCREPANCIES BETWEEN OBSERVATION AND COMPUTATION

5.1 OFc — OKy Relationship

The most unexpected result arising from the composite model was that the computed value

of cc of the loosest random packing was 0.45, compared with 0.423 observed. Several more loose
packings of 1 in. spheres were prepared in the prismatic vessel and examined more careful.}y° In
each case it was found that several of the spheres adjacent to the wall were floating, plgymg no
part in the overall structure of the packing. When the vessel was rocked gently the floating spheres
could be seen to move freely while the rest of the packing remained remarkably stabl'eo Other float-
ing spheres could be seen further into the packing. For a total of 888 spheres touching the wall,
38 floating spheres were observed in close proximity to the wall., The floating spheres thus rep-
resented 4.1 per cent of the total of the spheres touching or capable of touching the wall.

With a vertical plane wall a floating sphere is unlikely to touch the wall since it would
then be in an unstable position. The observed minimum value of OFw of 0.615 is therefore taken
as not including any floating spheres. In the central region; however, all floating spheres would
be included in the observed value of the mean void fraction of 0.423. For the mean void fraction
of the structure proper to be 0.45, the floating spheres would have to be 4.7 per cent of the total,
which is in good agreement with the observed value of 4.1 per cent in close proximity to the wall.

Floating spheres were also observed in slightly denser packings prepared by \{ibrating
such packings, but not in the range normally obtained in practice, namely where OFy, is greater

than about 0.70.

5.2 V;/Vy — OFy Relationship

The second discrepancy, already noted, is that the observed values of V; /Vy at the loose
end of the range exceed the computed values. This can be adjusted over most of the range on the
following basis.
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In the equilateral triangular arrays, the intruding spheres do not come within half a
sphere diameter of the wall over the range corresponding to the random packings. The intruding
sphere material is therefore confined to the inner half of the outer region. In the random packings
part of the intruding sphere material occupies the outer half of the outer region, its contribution
to V; being quite significant at the loose end of the range.

The volume of the intruding sphere material in the inner half of the outer region was com-
puted for the random packings frcm the experimental results, and the values are plotted in Figure
15. They agree closely with computed values over the range of random packings normally encountered
in practice, but a discrepancy still remains at the loose end of the range. About one third of this
discrepancy is accounted for by the floating spheres, which were included as intruding spheres
during the experimental determinations. The various corrected points are presented in Figure 15.

5.3 €c — n¢ Relationship

The model does not help to clarify or extend the €-—n relationship established in Part III;

in particular it does not establish whether n_ remains substantially equal to 6 or decreases in accord-
ance with Equation 1 as ¢ decreases below 0.395.

The equilateral triangular arrays provide little guidance, though the following is worthy of
note. Each sghere in the rhombohedral array has 12 points of contact; of which the six around the
equator are not load bearing points. Immediately the layers are squeezed closer together contact
is broken at the equatorial points, but the six load bearing points remain throughout the range. The
cubic array can, however, be visualised as expanding slightly so that all six points of contact just
break, while €. remains at 0.4764 There are then two values of n. at each end of the range, 12
and 6 when €c = 0.2595, 6 ¢ad O when €c = 0.4764. The first and fourth are the terminal values of
the curve in Figure 2.

An experiment was carried out to determine the ec— nc relationship in the central region
of the loosest obtainable packing. Several packings of 0.25 in. nylon spheres were prepared in an
8 in. diameter Perspex tube by filling and withdrawing a central ioad tube. The observed values
of ec were all in close agreement, the average being 0.420. From Table 1 it can be seen that nc
would have the value of 4.4 if Equation 1 were appropriate and no allowance were made for floating
spheres. If allowance were made, ¢ would be 0.45 and n: would have the improbable value of 2.2.
A determination of nc was made for one such packing. The vessel was topped up with a dilute ink
solution, drained, and dried out by a gentle stream of air at ambient temperature over a period of
many hours. When spheres were removed from the packing, points of contact were clearly identified
by a small ring and close contacts by a small spot. Samples were taken from various parts of the
central region by each of three observers and counts made. All were in close agreement and the
average was 6.3 points of contact per sphere. It therefore appears unlikely that Equation 1 holds
in practice for values of €. greater than 0.3954.

5.4 ny -~ OFy Relationship

The agreement between observation and calculation in Figure 6 indicates that the points
of contact between adjacent spheres touching the wall break closely at the same rate as the sphere-
to-wall points of contact.

6. TWO-DIMENSIONAL MODEL

The composite model does not directly cast new light on the <t -- n'.. relationship. How-
ever a brief exploratory study was made of the two-dimensional case for possible parallels with
the three-dimensional case.

As stated in Part III, the equation given in Figure 3 enables the following values to be cal-
culated:
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when n.=0, e = 1 — T = 0.2975 (significance unknown);
C C 2@
when n. = 3, € =1- T = 0.2146 (same € as circumscribed square);
274
when nf. = 6, e =1- —Z_ = 0.0931 (circumscribed hexagon).
243

The study was extended by considering the two-dimensional equivalents of the equilgteral
triangular arrays. The starting point in this case is the densest possible packing of equal discs,
the hexagonal array, in a semi-infinite vessel with a horizontal straight edge forming the base.

The array is oriented to give horizontal rows of touching discs. If the rows are visualised as

being squeezed together, while the discs in each row remain equispaced as they separate, a con-
tinuous range of regular arrays is generated. We call these the two-dimensional equispaced arrays.
They include the square array, and the process can be continued further, finally terminating when
discs which are vertically above one another make contact. This is merely a return to the hexagonal
array, oriented at right angles to the original.

As in the three-dimensional case, relationships exist between the geometrical properties
of the densest and loosest arrays. All are functions of a variable m} where m' = 1 for the original
hexagonal array, m' = 2 for the square array, and m' = 3 for the final orientation of the hexagonal
array. Properties of interest are tabulated in Appendix 2.

The two-dimensional rig referred to in Part Il was used for an experimental determination
of the properties of loose random packings in the outer region. Packings were prepared by placing
two strips of wood 2% in. wide against one vertical straight edge of the vessel, filling it with
spheres, and withdrawing the strips quickly in turn. The properties of interest were calculated
from the observations in terms of the equivalent discs.

The experiment was repeated seven times, giving a total c¢f 107 spheres of 0.9902 in.
diameter touching the edge over a total length of 150 in. Only one floating sphere was observed.
The overall occupancy factor of the equivalent discs touching the edge was 0.71, compared with
0.7071 calculated. The ratio of the intruding disc area to that of the discs touching the edge
was 0.268, compared with 0.244 calculated. When corrected by subtracting the area of the intrud-
ing spheres in the outer half of the outer region, the ratio was reduced to 0.223.

These results indicate that the outer and central regions reach the loosest possible con-
dition together, despite the potential for a much smaller occupancy factor of the discs touching
the edge. Although the agreement between computation and observation is close, it must be
emphasised that this was but ene spot check of the two-dimensional model. In particular an
exhaustive study of other preparation methods was not attempted, so that it is not certain that
the loosest possible packing was achieved. A more detailed study would be of interest, but is
outside the scope of this study.

7. DISCUSSION

7.1 Relatinnships Between the Various Occupancy Factors and Derived Properties

The calculated occupancy factors and derived properties of the equilateral triangulas
arrays agree generally with experimentally determined properties of random packings. The agree-
ment is particularly close in the outer region over the range of random packings normally encountered
in practice, after an allowance has been made for the intruding sphere material in the outer half
of the outer region. If the allowance is not made, a discrepancy of about 17 per cent is introduced
to the volume of the intruding sphere material, representing about 3 per cent of the total volume of
sphere material in the outer region.

.

.| but that n. remains essentially constant at this value. The OF. .~ OF, relationship established
1 by the composite model constitutes a direct relationship between the number of sphere-to-wall con-
tacts per unit area and OF (and hence ¢ for the centrel region).

{ Ny = 3), and that ny would then remain essentially constant at 3 as OFy decreased further. This
§ would have constituted a two-dimensional parallel to the - — n relationship in the central region;

1 however the disposition of the experimental points in Figure 6 offers little support for this possibility.
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As can be seen from Figure 15, after making this allowance, and a further allowance for
the floating spheres, the computed and observed values of V; /Vy are 0.307 and 0.260 respectively.
This unresolved discrepancy of 18 per cent represents about 3 per cent of the total volume of
sphere' material in the outer region.

It is not known whether this is due to experimental error or to the model. However, there
is no known reason to anticipate a breakdown in the model as the loosest possible condition is
approached, since both the loosest random packing a:ii the cubic array fall well short of the limit-
ing condition. This point can only be resolved by further experiments, or by finding precise quanti-
tative criteria governing the loosest possible condition.

The unresolved discrepancy in the values of V| /Vy at the loose end of the range does not
detract from the good agreement between observed and computed values over the range of random
packings relevant to a recirculating pebble bed nuclear reactor, that is, in the vicinity of the
‘normal’ random packing, for which OFy = 0.742.

The composite model indicates that the three sphere categories reach the loosest possible
condition together in unbiased random packings. The model based on the properties of the regular
two-dimensional arrays, and supported by a limited experimental investigation, indicates that this
also applies in ihe two-dimensional case. Radial bias should therefore oaly arise in practical
random packings when the packing method gives rise to variable consolidation effects.

An interesting implication of the points of agreement between the properties of the equi-
lateral triangular arrays and the unbiased random packings is that the ability of the three sphere
categories to fill the available space is independent of the degree of ordering of the packing.
Further evidence for this is given in Part I, where the strong local radial variations in random

packings in cylindrical vessels are found to have no significant effect on the mean void fraction
of the central region.

However, it can readily be shown that this is not a universal law. A range of square
arrays can be built up in the same way as the equilateral triangular arrays, but the relationships
between the computed properties of the three sphere categories are different. The properties of
the orthorhombic and tetragonal sphenoidal arrays are different again, even in their stable configura-
tions. These can be built up respectively on a rectangular grid with sides D, and {3/2 D, and on
a triangular grid with sides Dy, V7/4 D, andV7/4 Dy. Furthermore they have the same value
of OFy but different values of OF.

It therefore appears unlikely that the relationships extend beyond the equilateral triangular
arrays and the unbiased random packings. It is not possible to say categorically that they must
hold even there, in the absence of a formal proof. Even if one were forthcoming, it would not
enable the properties of the loosest possible random packing to be computed with a higher degree
of certainty than the values computed for this report.

7.2 Relationships Between Mean Numbers of Points of Contact and Other Properties

In the central region, indications are that the €. — n. relationship given in Equation 1 does
not hold for €. greater than 0.3954, the value for the ‘normal’ random packing, for which n¢ = 6,

In the outer region, it appeared early in the investigation that the ny ~ OFy relationship
would foliow the two-dimensional curve over its entire practical range (that is, from ny = 6 to
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7.3 Two-Dimensional Case

The relationships between the properties of the two-dimensional equispaced arrays agd
the random packings help to clarify a point outstanding from Part III. This is the unknown sig-
nificance of the value of €= when n. = 0 (see Section 6 above).

We now have two expressions for €::

From Figure 3

vy T
1-€¢ = ) ——:—ﬁrc— (32)
T
and from Appendix 2
i

1—el = — : | (33)
4\'m'— ﬁ— |

Eliminating €c, we have
Nc

m'2 —4m' +(5— —3——) =0 . (34)

Any value of n'c between 0 and 3 gives a value of m' whichis a complex number; so presum-

ably only that part of the curve between nl- = 3 and n; = 6 has any physical significance. Equation

34 gives the values of m' already established, for example m'= 2 when n'c = 3, and m' = 1 and 3
when n'- = 6.

One difference between the two- and three-dimensional cases remains unexplained. This
is formation of stable two-dimensional packings with less than four points of contact per sphere.
One possible explanation is that the spheres in the two-dimensional experiments had a greatly
reduced ability to rotate under load compared with the three-dimensional situation. The possible
importance of this point can be appreciated by referring to a simple experiment. If say ten equal
precise spheres, such as 1 in. ball bearings, are laid in a row in an accurate vee block, and the
two end spheres are carefully held to prevent rotation, a substantial axial load can be applied to
the row. If one of the end spheres is rotated very slightly while attempting to sustain the load,
the load bearing ability of the row breaks down immediately and the spheres fly out of line.

In the formation of a three-dimensional packing, as points of contact are being made and
loads are being applied, a sphere has three rotational degrees of freedom; also the loads are
applied in random directions. The sphere and its neighbours may therefore have a mobility under
inclined forces comparable with that of a sphere on a vee block when rotation is initiated; if so it
would have a high probability of evading the clamping action of less than six neighbours. A random
packing with a mean of six points of contact per sphere can be densified even further by vibration.
When the vessel has a plane base, a substantial volume can form with a rhombohedral structure.
This can also be demonstrated by placing several layers of spheres in a shallow rectangular box
and shaking horizontally. A rhombohedral structure forms immediately. Both processes can be
seen to induce rotation of the spheres, and it appears that this type of mobility is a necessary
prerequisite to the formation of dense packings.

In the two-dimensional case, with only one rotational degree of freedom and uniplanar
loads, the mobility of a sphere may be so small that it has little ability to adjust its position
when it is ‘clamped’ by three adjacent spheres. However, this is not necessarily so in the outer
region of a three-dimensional packing in a semi-infinite vessel. As a loose packing is vibrated
down, the movement of intruding spheres may induce a slight rolling action in the spheres {ouching
the wall, enabling them to escape the clamping action of their neighbours and make .nore contacts
for a given value of OF,. This would account for the observed ny — OFy.reiationship ‘not following
the two-dimensional curve between ny = 3 and 4.

g ey »
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This point can be clarified further by siudies of recirculated two-dimensional packings.
The mean number of points of contact would be expected to be about four, because the clamping
forces change and the spheres rotate continually owing to relative movement throughout the pack-
ing. An estimate of the mean number of points of contact can be made from Figure 16, which
shows the structure resulting from flow in a two-dimensional vessel with two outlets. The vessel
was filled initially with bronze spheres and kept topped up with steel spheres of the same diameter
as flow proceeded.

The dark spheres in the lower portion of the figure have remained stationary, while the
light spheres have reached steady state flow conditions. Unfortunately a direct determination
of the mean number of points of contact (of the light spheres) is not possible from the original
photograph. However, a value has been deduced from the occupancy factor, which was deter-
mined directly from the photograph by two independent observers, avoiding the dense regular
areas as far as possible. An average value of 0.933 was vbtained. corresponding to a mean
number of points of contact of 4.66 (calculated from the equation given in Figure 6).

The vessel had straight vertical sides, encouraging the formation of dense regular areas
which tend to move by slipping in blocks. The outlet channels also contribute to this effect. A
vessel with an irregular outline, with outlet orifices instead of channels, might give a value of
n- nearer to four. At least Figure 16 shows conclusively that the value cannot be three.

7.4 Future Experimental Work

The experiments and computations reported here (and also those with cylindrical vessels
reported in Parts I and V) were substantially completed before the significance of the effect of
floating spheres in loose packings was fully appreciated. Time did not permit more than a few
key determinations to be made of this effect. Indications are that it is not significant over the
range of random packings relevant to a nuclear reactor but future workers in this area are advised
to satisfy themselves on this point by appropriate experimental determinations.

Experience to date indicates that the order of accuracy of the experimentel determinations
of OF., OF, and OF; by the methods used is about +1 per cent, and that this accuracy is unlikely
to be improved by any method. This accuracy has been achieved, both experimentally and analyt -
ically, except possibly at the loose end of the range. Further experimental evidence would be
desirable to clarify the small remaining uncertainties; and this would involve repeating each experi-
ment several times to achieve better accuracy. The use of two different methods and/or two
observers would also be advantageous. To finalise the matter, it would also be necessary to
establish precise quantitative criteria governing the loosest possible condition, particularly in
the central region.

Over the range of unbiased random paciings normally encountered in practice, and partic-
ularly over the range relevant to a recirculating pebble bed nuclear reactor, the present study
provides a complete balance sheet to the order of accuracy stated above.

Several key experiments are suggested for workers interested in the whole range of pack-

ings, including the properties of the loosest possible random packing and the criteria governing
it —

(i) Determination of the values of .. and n¢ for the ‘normal’ random packing.
This is the packing resulting from recirculation under gravity to the point
at which it reaches a steady state condition. It is then envisaged as a stable
structure when at rest yet having mobility throughout when gravitational flow
is initiated from the bottom. Similar determinations are desirable for the
densest possible random packing obtainable in the absence of ordering induced
by the containing vessel.

(ii) Experimental determination of all the properties of the loosest random packings
obtainable in the laboratory. This would clarify the residual errors at the loose
end of the range and enable further refinements to be made to the composite
model for a final check of its consistency and validity.
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(iii) Repetitions of the determinations of ny and OFy, in the wall region, and

(iv)

averaging results to reduce the scatter exhibited by the experimental points
in Figure 6. It might also be pcssible to produce denser packings than can
be obtained by vibration by jolting hand packed rhombohedral arrays. The
composite model can be adjusted if necessary by making the two types of

contact break at slightly different rates. This would not affect the rest of
the model.

Determination of the properties of the central region of recirculated two-
dimensional random packings, in particular to ascertain whether the mean

number of points of contact per sphere is four away from the influence of the
edges of the vessel.

8. SUMMARY AND CONCLUSIONS

1.

The relationships between random packings and the regular arrays, given in Part III,

have been extended to the wall region of unbiased random packings in a semi-infinite
vessel. '

. They apply not only to unbiased random packings and the rhombohedral and cubic

arrays, but also to a family of regular arrays, the equilateral triangular arrays, to
which the rhombohedral and cubic arrays belong.

- The ability of the three sphere categories to fill the available space is the same

for unbiased random packings and the equilateral triangular arrays. This enables
the occupancy factors and derived properties of random packings to be calculated,

subject to a small correction due to intrusion of sphere material in the outer half
of the outer region.

. The equilateral triangular arrays provide no direct information on the mean number

of points of contact in either region of random packings.

. On the basis of the nc — €c relationship developed in Part III, a model has been

developed to account for observed mean properties, including the mean numbers of
points of contact, in both regions of random packings.

. Similar relationships are shown to apply in the two-dimensional case, supported

by a limited experimental study.

. The three-dimensional model enables the properties of the loosest theoretical

random packing to be computed, provided any one related property is known. On
the basis of the experimentally determined minimum value of OFy of 0.615, the
mean void fraction of the central region of the loosest theoretical random packing
is calculated to be 0.450. In very loose practical packings, floating spheres are
also present, but they play no part in the structure proper. They are estimated to
comprise about 4.7 per cent of the total, which would account for the overall mean

void fraction of about 0.423 observed in the loosest packings prepared for the
present study.

. An accuracy of the order of + 1 per cent has been achieved for the values of the

occupancy factors in the present study, both experimentally and theoretically, over
the range of unbiased random packings relevant to a pebble bed riaclear reactor.
An overall accuracy of the order of 3 per cent has been achieved in the model at
the loose end of the range, and further experimental and theoretical investigations
are necessary. Several other areas for investigation by future workers are also

outlined, including the properties of the ‘normal’ random packing and the densest
possible random packing.

- Future experiments must include a careful determination of the number of floating

spheres; and their mean number of points of contact with the wall or with adjacent
spheres.
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10. Some latitude exists for the composite model developed in this study to be
adjusted to match more precise experimental data should it become available.
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10. NOTATION

D, = diameter of cylindrical vessel

D, = diameter of sphere

OFc = occupancy factor of spheres in central region

OFy = occupancy factor of spheres touching wall

OF = occupancy factor of intruding spheres

nc = mean number of points of contact between spheres in central region

éc = mean void fraction of central region

Pe = mean radial distance between centres of adjacent spheres in central region
Veu = mean sphere volume in unit volume of central region (or occupancy fraction)
Vice = volume of unit cell in central region (i.e. volume associated with each sphere)
Ny = mean number of points of contact between spheres touching wall

Py = mean radial distance between centres of adjacent spheres touching wall
Vou = mean volume of spheres touching wall in unit volume of outer region

Vico = volume of unit cell in outer region (i.e. volume associated with each sphere

touching wall)

\'A = volume of sphere

n = number of spheres touching wall

Vy = volume of spheres touching wali

Vor = volume. of outer region

V, = volume of intruding spheres

Vi = mean volume of intruding spheres in unit volume of outer region

Vyw = mean void volume available for intruding spheres in unit volume of outer region
FA; = filling ability of intruding spheres

Ngg = mean number of points of contact between adjacent sphereé touching wall obta‘ined

by two-dimensional expansion alone
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a dependent variable used in establishing the equations for the equilateral triangular

mean radial distance between centres of a‘djacent spheres touching wall obtained
a dependent variable used in establishing the equations for the two-dimensional equi-

by two-dimensional expansion alone
mean number of points of contact between discs in central region of two-dimensional

coefficients to adjust equations for the three sphere categories
mean void fraction of central region of two-dimensional packing

volume of outer region subject to contraction

volume of outer region subject to expansion
The only references in this part are to other parts of the series whose titles are given in

References relevant to the overall study are given in Parts I, II and III.
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Expre
in Terms of m'
(Selected Examples)
(7)
7T
m'2
ml

1
I—I—T

44m'
Jm'

4J1n'—

4‘Jm'— mztz-'—

1~
,Iml
1-

).

1 arsin (2 { dp ~d3)

4

Jdp—d%

Acsec/Avuco

il
A1y /0.062690

\ 4

1 - dg
AEU

in Terms of
Other Properties
(6)
l—da
Aycc /dg
1 —-Acy
T/(4Ayco)
Agy /(
1 —
A]u/VAHJ
Ay /Agy

dg
/(4 Aycc)

~ (dg~0.5)

General Expression |General
2

3)
0.499689

1.0

0.453450
0.577350
0.5

0.392455
0.226584
3.614366
0.546550
0.414571
1.0

= 0.093100

= 0.866025

= 1.732051
= 0.906900

(m'
)
0.5
77
3

2
3

3
3

Hexagonal Array
3

J3 = 1.732051

13
2

=

7

2

7

{3
1-
=

4)
0.707107
1.414214
1.414214
0.785398

= 0.214602
0.866025
0.555360

= 0.707107

= 0.292893

0.191677

0.135536

2.162005

0.444640

0.304822

0.244051

1.074570

(m' = 2)
1.0

Square Array

2
2

=

T

4

{2
2
{2
{2
L
4
13
2
N2
2

1-—
1—

APPENDIX 2

0.866025
0.093100
0.785398
0.133975
0.062690
0.062690
1.0

0.214602
0.292122
0.079819

1.0
1.0
1.0
1.0
1.0

3)

= 0.906900

Hexagonal Array
(m'=1)
243

i

7
i
4

)| 243

\E)
-

1

C

H

1-¢
U
1
EFF

Symbol *
(2)
Ayco
Acy
OF ¢
Ay
OFg

Acskeg
Ay
OF;
Vi
FA]
A/Ay
0

(

g discs in unit
jacent

SOME PROPERTIES OF THE TWO-DIMENSIONAL EQUISPACED ARRAYS (STANDARDISED TO UNIT DISC DIAMETER)

(1)

Distance between horizontal rows

Property"
* These symbols are the two-dimensional equivalents of those used in Appendix 1

Mean area of unit cell in central region (i.e. are=

associated with each disc)
Mean area of discs touching edge in unit area of

outer region
Mean area of intruding discs in unit area of outer

Mean area of unit cell in outer region (i.e. area
associated with each disc touching edge)
region

Mean disc area in unit area of central region

Distance between centres of adjacent discs in
(or occupancy fraction)

same row
Ratio, area of intruding discs to area of discs

Occupancy factor of discs in central region
touching edge

Effective distance between centres of ad

Occupancy factor of discs touching edge
discs in central region

Mean area of intruding circular segment
Mean void area available for intrudin

Occupancy factor of intruding discs
volume of outer region

Mean void fraction of central region
Filling ability of intruding discs

Mean intrusion distance

i

n

1 10020
121 99083
201 9300
301 9700
481 9600
501 9500
601 9400
701 9300
801 9200
901 9180

1001 9002
1101 8900
1201 8800
1301 8700
1401 8600
1501 8500
1601 8420
1701 8300
1801 8200
1901 8100
2001 8000
2101 7900
2201 7800
2301 7700
2401 7600
2501 7500
2601 7400
2701 7300
2801 7200
2901 7100
3001 7000
3101 6900
3201 6800
3301 6700
3401 6600
3501 6500
3601 6400
3701 6300
3801 6209
3901 6100
4001 6000
4101 5900
4201 5800
4301 5700
4401 5600
4501 5500
4601 5400
4701 5300
4801 5260
4901 5100
5001 5000
5101 4900
5201 4802
5301 4700
5401 4600

Ny

6.00
5.82
5.63
5.44
5.23
5.03
4.82
4.59
4,37
4.13
3.96
3'87
3.79
3.70
3.62
3.53
3.45
3.37
3.29
3.21
3.13
3.05
2.97
2.90
2.82
2.75
2.68
2,61
2.53
2.46
2,40
2,33
2.26
2.19
2.13
2.07
2.00
1.94
1.88
1.82
1.76
1.70
1.64
1.59
1.53
1.48
1.43
1.37
1'32
1.27
1.22
1.17
1.13
1.08
1,083

D¢

12.5
11.8
11.6
11.4
11.3
11.1
10.9
1@‘6

[ arey
[ W]
L ]

e o * o - s e o * e . * o L] L ] e o e e
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APPENDIX 3
VALUES COMPUTED BY COMPOSITE MODEL

Vi

2.0536
@.0542
P.0548
9.2554
2.0560
0.0566
0.8573
2.857¢9
0.0586
P.0593
P.0601
0.0619
9.08619
a,0628
0.0637
0.0646
0.0655
0.0664
0.0673
2.0682
2.4691
2.0701
0.07192
9.,0719
2.0728
6.0737
2.0746
B.8756
0.0765
0.0774
0.0783
2.0792
?.0801
0.081p
p.A818
9.0827
2.0835
0.0844
@.0852
2.03860
0.0867
0.0874
2.0881
9.0888
0.0894
0.0899
0.0904
0.0908
2.0911
0.7913
0.0914
6.7914
2.0912
2.0907
2.0901

Oy

1.300
0.990
2.980
2.970
B.960
8.950
P.940
0.930
2.920
3.910
2.899
3.887
8.875
B.863
B.852
¢.841
0.831
p.820
2.810
P.800
¢.790
A.781
p.772
B.763
B.754
@.745
B.737
p.729
2.721
2.714
B.706
8.699
@.692
@.685
B.679
B.672
B.666
B.660
@.1555
7.649
B.644
0.640
B.635
8.631
B.627
B.624
B.621
0.619
B.617
B.616
4.615
B.615
B.617
6.619
3.623

OR

1.82
1.01
1.@2
1.03
1.04
1.086
1.087
1.08
1.089
1.11
1.12
1.14
1.15
1.17
1.19
1.20
1.22
1.24
1.26
1.27
1.29
1.31
1.32
1.34
1.36
1.38
1.39
1.41
1.43
1.44
1.46
1.48
1.49
1.51
1.53
1.54
1.56
1.57
1.59
1.60
1.62
1.63
1.64
1.66
1.67
1.68
1.69
1.69
1.70
1.70
1.71
1.70
1.70
1.69
1.68

FA,

B.136
N.135
B.134
P.134
2.133
?.133
2.133
8.132
8.132
p.132
8.132
2.132
2.131
2.131
0.131
2.131
P.132
P.132
P.132
P.132
g.132
2.133
.133
2.133
0.134
P.134
0.135
9.135
0.136
8.136
0.137
0.137
P.138
0.138
B.139
2.139
2.140
0.140
.141
0.142
D.142
P.143
0.143
.144
B.144
@.144
0.145
9.145
P.145
0.145
B.146
B.146
B.145
f.145
0.145

Vi/Vy

0.089
P.091
0.092
n.894
2.096
A.099
g.101
7.103
a.1e5
n.148
g.111
f.114
A.117
B.120
N.124
A.127
0.130
B.134
0.137
#.141
8.145
f.148
B.152
A.156
@.160
B.164
B.167
f.171
n.175
n.179
#.183
8.187
f.191
8.195
#.199
9.203
8.207
B.211
0.215
8.219
P.223
B.226
8.229
N.233
0.236
7.238
0.241
0.243
BP.244
0.245
.246
h.246
¥.245
B.242
8.239

C"

6.0¢
6.9du0
5.99
5.99
5.98
5.98
5.97
5.97
5.97
5.96
5.96
5.96
5.96
5.95
5.05
5.95
5.94
5.94
5.93
5.93
5.93
5.92
5.92
5.92
5.91
5.91
5.91
5.90
5.90
5.90
5.89
5.89
5.88
5.88
5.88
5.87
5.87
5.87
5.86
5.86
5.86
5.85
5.85
5.84
5.84
5.84
5.83
5.83
5.83
5.82
5.82
5.82
5.81
5.81
5.80

2.42
2.42
2.41
2.41
2.41
2.40
2.40
2.39
2.39
2.38
2.37
2.36
2.35
2.35%
2«34
2.32
2.31
2.30
2.29
2.27
2.26
2.25
2.23
2.21
2019
2.18
2.16
2.13
2.11
2.09
2.07
2.04
2.01
1.99
1.96
1.93
1.94
1.86
1.83
1.79
1.75

107”-
1.66-
106“‘
1.54-

0.164
2.165
0.165
0.166
2.166
0.166
0.166
0.166
?.165
@.165
9.164
#.164
n.163
0.162
0.160
3.159
M.157
®.155
n.153
8.15¢
0.148
0.144
0.141
2.137
0.133
2.129
n.124
0.119
0.113
n.107
P.161
0.094
0.086
2.078
0.269
A.060
a.650
3.039
g.¢28
n.016
P63
a.012
0.227
h.044
?.%62



Plane wall

Sphere entirely
within central region

Sphere
touching wall

Intruding portion

ot sphere
Central
————— ———— .
region
(a) SEMI-INFINITE VESSEL
+ Cylindrical
wall

y

{b) CYLINDRICAL VESSEL

FIGURE 1. PACKINGS OF EQUAL SPHERES IN SEMI-INFINITE AND CYLINDRICAL
VESSELS (SHOWING TWO REGIONS AND THREE SPHERE CATEGORIES)
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(a) TILTED CUBIC ARRAY (€= 0.4764)

(b) LIMITING CASE (€ = 0.3198)

FIGURE 10. TWO OF THE BLOCKED PASSAGE EQUILATERAL TRIANGULAR
ARRAYS ON HEXAGONAL BASES (Top spheres marked X) |

CLEAR PASSAGE EQUIVALENT OF TILTED CUBIC ARRAY ON

FIGURE 11.

TRIANGULAR BASE (Top sphere marked X)

e a. s el



(b) LIMITING CASE (€= 0.4626)

FIGURE 12. TWO OF THE CLEAR PASSAGE EQUILATERAL TRIANGULAR

ARRAYS ON HEXAGONAL BASES (Top spheres marked X)

EQUILATERAL TRIANGULAR ARRAYS
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COMPUTED BY FIRST MODEL
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FIGURE 13. COMPARISON OF COMPUTED OCCUPANCY FACTORS OF CENTRAL REGION
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FIGURE 158. STRUCTURE RESULTING

FROM FLOW IN TWO DIMENSIONAL PACKING

(After R.H. Nelmes, AAEC Unpublished)




