AAEC/S20

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT
LUCAS HEIGHTS

SUMMER SCHOOL 1978

SIMULATION IN SCIENCE WITH MATHEMATICS AND COMPUTERS

Edited by
J.P. Pollard

December 1978
ISBN 0 642 59656 5

AUSTRALTAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT
LUCAS HEIGHTS

SUMMER SCHOOL 1978

SIMULATION IN SCIENCE WITH MATHEMATICS AND COMPUTERS

Edited by

J.P. POLLARD

ABSTRACT

These notes are for a Summer School which will introduce mathe-
matically minded year-12 High School students to simulation applied
to science. The course considers the application of

1. discrete Monte Carlo techniques, and ‘

2. continuous differential techniques
to a reactor problem - the transmission of neutrons through mild steel.

A considerable portion of the course is devoted to electronic
computing using large scientific digital computers, minicomputers,
microcomputers and hybrid, analogue-digital computers. These techniques
are applied to the neutron transmission problem and other simulation

processes.

National Library of Australia card number and ISBN O 642 59656 5

The following descriptors have been selected from the INIS Thesaurus
to describe the subject content of this report for information retrieval
purposes. For further details please refer to IAFA-INIS-12 (INIS:

Manual for Indexing) and IAEA-INIS-13 (INIS: Thesaurus) published in
Vienna by the International Atomic Energy Agency.

[1] SIMULATION; STOCHASTIC PROCESSES

[2] DIFFERENTIAL EQUATIONS; MATHEMATICS; COMPUTER CALCULATIONS;
FUNCTIONS

[3] SIMULATION; MONTE CARLO METHOD; RANDOMNESS; NEUTRONS; SHIELDING;
NEUTRON FLUX

[4] NEUTRON BEAMS; NEUTRONS; ABSORPTION; SHIELDING; NEUTRON REACTIONS:
SCATTERING; NUCLEIL; IRON

{5] AMPLIFIERS; ANALOG COMPUTERS; DIFFERENTIAL EQUATIONS; HYBRID
COMPUTERS; MATHEMATICAL MODELS; POPULATION DYNAMICS; SIMULATION

[6}] COMPUTER CALCULATIONS; FORTRAN; MATHEMATICS: PROGRAMMING
LANGUAGES

[7] PROGRAMMING LANGUAGES; PDP COMPUTERS; MICROPROCESSORS

[8] COMPUTER CALCULATIONS; SIMULATION

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7

CHAPTER 8

CONTENTS

INTRODUCTION TO SIMULATION TECHNIQUES
G. Doherty

DIFFERENTIAL EQUATIONS AND EXPONENTTALS
J.P. Pollard

MATHEMATICS OF SOME RANDOM PROCESSES
B.E. Clancy

NEUTRON REACTIONS AND REACTORS
J.W. Connolly

ANALOGUE COMPUTING AND DYNAMICS
C.P. Gilbert

FORTRAN
J.M. Barry

BASIC FOR MINIS AND MICROS
J.P. Pollard

COMPUTER GAMES - A SIMULATION STUDY
E.J. Clayton

35N NO SONYH

Apmg
uonenwIs
]
saweq
1a1nduiog

; %1 01 NOISSINSNVEL dOHA OL HILNWODINIW
Y g _ SILYId 0 HIBANN QALYALLS3 JISVE 310 5t/11dad
q\ Xﬂ 4 NtO_.
Y Hadvd 501 hN
$3040 ¢ aNy $901 fﬁ;
AHOIML v 'STVILNENOJGX3
iy 107d S0NIN pue
y3dvd AL 101
201 Siu
sjenuauodxy pue i WIW 104 2ISVE AvIdSta
suonenby (enuasagg synsay |eyuawiLadxg T snnanooouom
% A
3 L=lojn Mo = b e TRED ;
" 213 'L={0) ey 1300/ 1390W HrL € SIVIHOLNL
4 ¥ oo TWINIHIHa OTYD AANOW = y
4NLIS QaHSMAVLSI DNISN SILVTd 20 e SNONNLLNGI 313W081d {

HIAWNN 30 NOILYINILST 40 NOILVDIdIHIA

s10)7e3Y pue
SuOILIRaY UoIINAY

el SN OHLAIN 3G NOISSIASNYHL

sa1ndwoq pugAy

wawdinbl
auldipajy Jeajanp
pue Ansiway)

J0 uondadsu)

NOILY LNIS 3543

SatweuAq pue
Burindwioy anbojeuy

S3Llvd 3d

WVHD0Yd NAO ONISN S31v1d 40
HIFWNN JO NOLLYINILS3 40 NOLLYDIHIEIA

SRR
00000008

TR

13ndwod Q9sINgI

INSOTYNY ANV NOILYINWIS

Wv3a u
r
\\ HO12v3d
H4012313a YIVOWN '
.,. $385300Hd
’ WOQNYH
uawuadxy eleo ‘
.
NOLLYINWIS ;
Y1IYOW 0L H SHIGNN
OTHYD ILNOW 4O NOILYDIITddY _ IWOANYY
! 0an3sd

$35532014 Wopuey
auiog J0 SanewWayley

sanbiuyaa)
ugnenwig
0} U01INPOAILY

CHAPTER 1
INTRODUCTION TO SIMULATION TECHNIQUES

Lecture by

G. DOHERTY
(University of Wollongong)

 CONTENTS

Page
1.1 GENERAL 1.1
1.2 A SIMPLE STOCHASTIC MODEL 1.3
1.2.1 System Description 1.3
1.2.2 Purpose of the Model 1.3
1.2.3 Scope of the Model 1.3
1.2.4 Construction of the Model 1.4

1.3 SOME REAL SIMULATIONS 1.6

1.1 GENERAL REMARKS

Simulation is an attempt to represent the behaviour of systems by
some sort of model. In the process of constructing the model, we try to
establish the relationships between the different interacting components
of the system. If possible, we try to express these relationships in
the form of mathematical equations containing quantitative as well as
qualitative information. When the parameters in the equations have been
determined, the model can be used to predict system effects. The simu~
lation is usually conducted because it is either cheaper or more con-
venient, or perhaps both, to conduct experiments on the model than on
the system itself. The use to which the simulation model will be put is
one major determinant of the complexity of the model; the other is the
complexity of the system itself. The following is a checklist of questions
which should be asked before and during the construction of the model.

What is the purpose in building the model and conducting the

stmulation?

Shielding calculations like the one you will see enable reactor
designers to design a radiation shield with the required characteristics
without having to build and test a prototype shield for each new reactor
design. Our purpose in looking at this problem is to give you a wide
exposure to different computers, computing techniques and some interesting

mathematics.

How much of the system must be included explicitly in a model?

To answer this question we must know the purpose of the model. 1In
the case of shielding around a reactor, it is much more difficult to
model the reactor itself and the shield, than to model the shield with
the reactor replaced by a source of neutrons hitting the inside of the
shield. Provided that we don't intend to use the model to predict the
electricity output of the station, the simple model of shield plus

source should suffice.

What system characteristics need we consider?

Simulation is usually concerned with a system in an initial state,
some inputs, the system in a final state, and some outputs, Sometimes
the states of the system are our primary concern (e.g. the state of the
economy in an economic model), whereas in other situations the main
interest may be system outputs produced in response to various inputs.

The shielding problem falls into the latter category - we are not

1.2

interested in the final state of the shield itself provided that its

properties do not deteriorate with use.

Is our system deterministic or stochastic?

Do we think we can write down a set of equations such that if the
inputs and initial state of the system are specified, the outputs and
final state of the system are uniquely determined? To answer the
question, we must study the system carefully, conducting experiments
where possible to measure outputs over a range of inputs, and'testing
whether experiments are reproducible. Here the physical scientist
enjoys a considerable advantage over the economist whose observations
are limited to one set of inputs and one experiment. If we cannot
determine output uniquely from specified input, two explanations are
possible -~ either the system is deterministic but we cannot find the
explicit relationships, or the output of the system is determined by
chance so that a unique output is, in principle, unavailable. 1In the
latter case, a simulation will usually seek to establish the relative
probabilities of various outcomes by conducting a series of trials.
Philosophically, it may be difficult to decide whether or not a system

is deterministic.

What sort of model should we construct?

Largely, our choice of model is constrained by whether we believe
the system is deterministic or stochastic. The shielding problem you
will examine offers a wider choice of model than do many systems. Each
‘neutron which impinges on the shield may eventually pass through it, or
not, depending on the outcome of a series of events with particular
probabilities of occurrence, In this sense the system is stochastic
and may be modelled by conducting a series of trials with individual
neutrons. However, the number of neutrons in an actual experiment is so
large (say 10'?) that the outcome of the experiment is essentially
deterministic because the statistical fluctuations are negligible. The
behaviour of the system can be modelled successfully by a differential
equation involving the average population of neutrons. You can judge
for yourself which type of model is better - both have strengths and

weaknesses.

What validation of the model is required?
This important phase of the process must be completed before

predictions based on the model can be taken seriously. Some possible

1.3

sources of error are as follows:

(1) Incorrect perceptions of system relationships. Some
economic models are particularly vulnerable here because
the experiment cannot be repeated with different inputs.

(ii) Incorrect measurement of system parameters. The impor-
tance of a particular system component to the simulation
may not be apparent when its parameters are estimated.

(iii) Incorrect computer coding of the model. The difficulty
‘ of producing a large correct computer code is not widely
appreciated,
1.2 A SIMPLE STOCHASTIC MODEL

Having discussed the general ideas of simulation it might be help-
ful to examine these ideas in the context of a fairly simple simulation.
Since many simulations involve probabilities, and since I have a nodding
acquaintance with this particular system, I would like to discuss,
briefly, the poker machine.

1,2.1 B8ystem Description

A vintage three-wheel machine has 30 (say) faces on each wheel,
each face showing one of 9, 10, J, Q, K or A. Each insertion of 20
cents (or coinage of lesser value), followed by a pull on the handle,
presents one face from each wheel in the paying position. Pays range
from 0 for most combinations to a $100 jackpot for AAA. To the honest
player, the machine presents as a stochastic system (i.e. the output of
money from successive inputs of 20 cents is obviously quite variable).
There is a suspicion amongst players that the initial and final states
of the machine are not totally independent (in the sense that what shows
next in the window relates to what was there last time), but this could
probably be ascribed to wishful thinking. The principal determinants of
the machine behaviour are the relative abundances of the various faces
on each wheel. Armed with this information (Which is available to the
machine owner), we should be able to produce a satisfactory model of
this simple mechanical device.

1.2.2 Purpose of the Model

The model is intended to allow a player of poker machines to play
our model instead.

1.2.3 Scope of the Model

The model will be required to display the result of each play and

keep a cumulative record of the player's financial status.

1.4

1.2,4 Construction of the Model
Consider the first wheel. Let fi be the faces 9, 10, J, @, K and
6

A, Let n, = the number of each face on the wheel. 5 = 30 the total

1 jop 1
number on each wheel.

The probability that fi will appear is

We need a mechanism to select the face in accordance with this
basic probability law. As this problem is common to many stochastic
simulations we will spend a little time on its solution, and the related
problem for a contlnuously distributed variable.

Firstly, we define a cumulative probability distribution by the

relations:

P0 =
P = Pi—l + pi .
Thus
P = 0
Pr = m
Pz = p1 + p2
Pe = p1 +p2+ps+py+ps+pg=1

Then, at each play, we generate a random or pseudo-random number in
the interval (0,1). Algorithms for performing this task are available
on most computers and in most computer languages. Each number in the
range (0,1) should be equally likely to be generated and various tests
can be undertaken to establish the validity of the generation algorithm.

For each random number T we test the inequalities

= <
Piap SE<F

and since ¢ is in (0,1) the inequality will be satisfied for one, and
only one, value of 1. This chooses the value fi of the face on the
wheel. '

This generation of events can be pictured as follows:

1.5

— — i Sm— — —— —— f— — — ——

per e — —— a— k. ——— -

——— —r— — ety Mt e TG — — —

P] = c < P

— — b —— ——— — — —

2
selects event 2

!
f
|
1

—— — —— — — t— -

-0

o o 1

Digression

I
|
|
|
|
|
I
I
|
I
u
|
6

b — — — =
)

N

10 2 1

The above figure applies to a discrete event, i.e. choosing one out
of six faces. The same type of idea can be extended to choosing a

continuous variable from the interval (a,b).

Let p(x) dx = the probability that x will be chosen in the

b
A p(x)dx
X
Define / p(x)dx

a

interval x to x + dx, normalised so that

I
=

[}

F(x)

Choose z in (0,1)

then choose x from F(x) = .
p(x) i1s called a probability density function.
F(x) is a cumulative probability function.

F(b)=1

Fla)=0

1.6

F(x) = £ has a unique solution provided that p(x) > 0, which is a
gsensgible restriction on p(x) in view of its definition.

Returning to our model construction: For each wheel, we read in
the relative abun#ances n. and form the cumulative probébilities Pi'

Our program also needs a table of paying combinations, and the amount

that each combination is to pay. Given this information, we can determine
the expected payout of our machine for each unit invested. No doubt the
latter information is supplied in' table form by the vendor to the purchaser
of such a machine. We can use it as one check on the correctness of our
simulation.

Use of the model: Our simple model is ready to generate a suc-
cession of results corresponding to plays on the actual machine. With.
marginally more effort, and extra information on player habits, such as
how much the player was prepared to lose, at what level of winnings the
player would cease playing, the rate of play and total time available,
we could simulate an evening's play in a few milliseéonds. Further,
given a lifetime playing regime, we could simulate the outcome of a
lifetime's involvement in a few seconds. In one minute of computer
time, on any respectable computer, we could generate sufficient possible
lifetime histories to give a prospective player an educational view of
his prospects. The computer bill for this exercise might not exceed the
loss resulting from one minute of real play.

Validation: Stochastic models are difficult to check because the
output is, by definition, unpredictable. It is often possible to check
expected values of gquantities against the mean values computed during
the course of simulation. For example, the expected payout should
correspond with the mean payout, computed over a long series of trials,
to within a statistical error. Failure to obtain agreement, at the
required significance level, would indicate either incorrect coding of
the simulation or a faulty random number generating aigorithm. Further
checks could also be made on the expected occurrences of each face on
each wheel.

1.3 SOME REAL SIMULATIONS

In September 1978, a biennial conference on simulation was held at
Canberra., The titles of some of the papers are reproduced below to give
an idea of the different types of simulation which were discussed. As

you can see, there is quite a lot of interest in the construction of

1.7

biological and economic models, as well as the more conventional areas

of engineering and physical science.

SOME TITLES FROM THE 1978 SIMSIG GONFERENCE

The Development of an Ecosystem Model of South West Arm (Port
Hacking, NSW)

Estimating Differential Equation Models of Water Quality in Non-
tidal Rivers

Automatic Tuning of Parameter Values in a Pasture Growth Simulation
Model

Hydrologic Simulation of Rainfall-Runoff in a small Urban Catchment
using an ARMA Model

A Control Model of Disturbed Cell Proliferation
Simulation with the NIF Model of the Australian Economy

Economy-wide Effects of Long-run Changes in Demography, Technolopy
and International Trade

The Use of Simulation to Analyse Exhaustible Resource Cartels
Railway Yard Design using Digital Simulation

Analysis and Simulation of Townsville Port Operations

Traffic Network Simulation - Assignment Model, TNS

The Hybrid Simulation of a Boiling Channel

Simulation of Depressufisation and Overheating of a Model Nuclear
Power Reactor

Dynamic Modelling and Control of Multistage Biochemical Reactor
Systems

A Study of Various Methods Available for Tuning Controllers
Digital Simulation of an Industrial Hydraulic Control System
Field Validation of a Crop/Pest Management Descriptive Model
Applications of Computer Simulation to Animal Disease Control
A Simulation Model of Temperatures in Grain Bins

Rapid Development of Predictive Pest-Moth Models

CHAPTER 2

DIFFERENTIAL EQUATIONS AND EXPONENTTALS

Lecture by

J.P. POLLARD

2.1

2.2

2.3

2.4

Appendix 24

CONTENTS

DIFFERENTIAL EQUATTONS
EXPONENTIALS
NATURAL LOGARITHMS

BACK TO DIFFERENTTAL EQUATIONS

Some Basic Functions for Micros if not Provided

2.1 DIFFERENTIAL EQUATTONS

In its simplest form, a differential equation (DE) problem looks

like this

_El_z. =
dx £Gx)

, 'y(O) = yg l » say, (2.1)
DE - " initial
condition

where y is a function of x to be determined with given value yq, and
f(x) is a given function of X.

Although y ig unknown, we at least know one value as given by the initial
condition and we know the slope, gﬁ » at every point. 1In fact what is
given is sufficient for us to determine the function y. To see this,

let us consider the following problem.

dy | -
dx I+x| , v{0) 1 (2.2)
DE initial
condition

We set up a table of given information

x 9y y

0 1 1

1 2

2 3

3 4

4 5

5 6 |

and then adopt™an approximate graphical approach (figure 2.1) to £fill 1in
the missing values.

Here are the results from figure 2.1:

[% y
0 1 1
1 2 2.5
2 3 5
3 4 8.5
4 5 13
5 6 18.5

2.2

by

20}

18}
d_y=1 +x%xy ylo}=1 i6F

l dx
e 14

’
Y4 12k

Yﬂ 1

stope gboyt x=1

_ dy
is d—x=2 le2fy

»¥

2 slope al x=0
]
'y s 3L ie 12/112
AL v2 ,

Figure 2.1 An approximate graphical approach

>¥

Hey wait a bit, you say, L can get these results analytically -

watch!
dy .
Now ax 1+x s
X dx + dy = (I+x)dx ,

v x
f =+ _[dy = [.(1+x)dx .
+

y is 1 when x is 0 - the initial condition

[Y]T = [x +-% xz]t - did you follow that ?
0 xn+1
remember S xdx = =Tt (2.3)
and finally
y = 1+x+%x2 , (2.4)

which gives exactly the same aumerical results as the table. (Lucky!)
We have thus solved the DE given by equation 2.2 in two ways -

numerically (or rather, graphically) and analytically. Encouraged by

this, we tackle the general form given by equation 2.1. The same

analytic attack gives

y x
f dy = f F(x)dx
¥y 0

0

X
i.e. y = Yo + J{ﬂ f{x)dx . (2.5)
As a further example, say yo = 1 and f(x) = 1 + x + %-xz,
% 1
then y = 1+ ./r (1 + x + 7 x%)dx
0
= 1+ [x+ l-x2 +1 x}F
2 6)0
which we can write as
2 3
X
y = l+x+%+3—' , (2.6)
where 2! =1 x2=2; 3t =1x2x3=6; ...;
n! =1x2x3x ... x {n-1) x n (2.7

is the factorial function,
Before we get carried away with the ease of analytically solving
DEs, let us introduce a variation of the problem that looks deceptively

simple, namely

L=y , ' y(0) = 1 (2.8)

DE initial
condition

Easy, you say;

y = 1+%Y2

WRONG! Let us tackle this problem a bit more slowly. We do not yet

know y on the right hand side of the DE and 80, as a starter, we use
y = 1 for all x (2.9)

which is at least consistent with the initial condition. Then

dy | -
X 1 , y(O) = 1 (2.10)

has the solution
y = 1+ x (2.11)
by direct integration. Let us use equation 2,11 on the right so that we

get the DE

dy . -
e 1+x , y(0) 1. (2.12)

2.4

We have already solved this as

y = l+x+=3x . (2.13)

dy _ 1 2 -
ax 1+ x+ 5 * . v{(0) 1 (2.14)
and again we have already solved this as

2 x3

X
y = 1+ x+ 57+ 37 . (2.15)

If this process is repeated we obtain

C e xR R + x + (2.16)
vz ST IR TR B B :

which fortunately has terms towards the end that get smaller and smaller

no matter how big x happens to be since n! for large n is a whopper (see

the table). .
Gedon ™y T3S

n n!

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880
10 3628800
15 1.3076744 x 10'2
20 2.4329020 x 10'°®

Equation 2,16 then gives us a convergent series expansion which
satisfies the DE (equation 2.8). 1In fact, the value of y for x = 1 is
simply obtained by adding up the reciprocals of entries in the above
table (to n = 10),

- i .1 .1 1
y(l)y =1+ 1+ 51+ 3 + A SRR Y (2.17)
= 2,718282

this is an important number called e, i.e.

e = 2,718282 (2.18)

2.5

which is as highly regarded in the mathematical world as the number
T = 3.141593 (2.19)

Digression
Having met 7 as a really special number, you may not like to see a
competitor enter the field. Well don't worry! T and e are

cousins through the strange but beautiful relationship

eW%TT = -1, (derived by Euler). (2.20)

2.2 EXPONENTIALS

We get an idea of the importance of e when we find that there is a
special mathematical function called the exponential function, which is
e raised to any power,

y = & (2.21)

Let us see if we can differentiate this expression. Here we go ..,

dy _ 1lim [zgx + Gx)—y(xi]

dx -~ 8x + 0 3% — remember first principles
1im [;x+6x_ex—
T Sx -~ 0 §x
_ lim [exe6x-ex did you follow this bit
§x + 0 §x x+6x x 6%
e =g e from a property
Sx of powers?
x lim e -1 , ‘X
= e e ol & — taking out e” as a common factor.
e1/16_l e1/64_l
Now 1716 1.032 and RSV 1.008 from which we infer,
correctly, that
8x
1im e -1
o [4]
then
A 2.23
ax = ¢ =y . (2.23)

Isn't this our DE 2.87 Yeg!

Well who would believe it; there are two solutions to our DE

(2.8):

2 x? 4 n
y = 1+ x +-§T + §T~+ AL I (2.16)

and y = ,ex . _ (2.21)

2.6

This is taking things 'two' far. Still the battle is yet to be 'one'.
Referring to an old maths text book (sorry T can't give the reference as
the cover has fallen off), we find that the solution of our DE is

unique, Aha! ydu mean

2 3 4 n
R X x 4 X x
e = 1+x+5T+3!+4!+ +n,+ - (2.24)
yes indeed!
Recapitulating —
the solution of the DE
d
5% = vy, y(0) =1 (2.8)
i = X—1+.+x2+3‘—i+3‘j—+ +X—n~ 2.25
s y=e = ¥ _ZT EY A e n!'l"... (.)
dex X , X . ,
and T = e , i.e. e 1is its own derivative. (2.26)

Of almost equal importance is the integral results obtained from

the above. We have, by direct integration,

Xd X
_[E§dx fo y(x)dx i
X
dy
.Ar ax %

but

y
_j{‘ dy = [Y(X)]j = y(x) - y(0) =yx) -1 ,

hence

3
~/: y(x)dx = y(x)-1 ,

* x
or ‘]P e dx
0

or [e®dx

e*-1 (definite integral) ,

e (indefinite integral) ,

i.e. e~ is its own integral. (2.27)

A quick look at figure 2.2 will help us to visualise the properties
2.26 and 2.27. '

Normally, a computer manufacturer supplies a package of routines

for mathematical calculations and we would then use the expression
Y=EXP (X)

to return the exponential of X in the storage location Y. (If you have

2.7

access to BASIC on a micro that doesn't have this package, refer to
Appendix 24A.)

2.5 4+

=
-

{1 anea - o449

s ; . x
-0 s oo & s

Figure 2.2 The function e®

2.3 NATURAL LOGARITHMS

The natural logarithm, denoted logey or £n y, inverts the rela-

tionship given by the exponential

y =e (2.28)
to give fny = x R (2.29)
just as the ordinary'logarithm, denoted log ¥, inverts the relationship

given by the antilog expression

y = 10% | (2.30)
to give logy = gz |, (2.31)
From our DE (2.8), rearrangement gives
dy = dx
¥
andthenfg—z = fdx=x=2ny .

hence the important result

2.8

fiil = fny : (2.32)
¥ .
(Have you ever tried to apply the integration formula
0 Xn+l
Jxdx = 3

when n = -1
[ox tx (= f -?{1) - k

Now we know better
Xn+l

S xMdx = { ntL ’ (2.33)
mx , m=-=1 .}

]

On a computer, we use one of the following expressions to return a

natural logarithm:

¥=ALOG (Y) - with the FORTRAN language
or X=L0G(Y) - with the BASIC language .

A plot of v = ¥ ig shown in figure 2.3.

"§8§ A j T ’ N R

983 —
600— |~
500
2400+——— p——t— | L a03p—-—

00— 17

A

70—

833
]
|
|

20*77, R _— N FAPTISES - e

W b 0 oy @00

%)

1 2 3 4 5 6

Figure 2.3 | am log paper showihg a plot of y=e”

2.9

2.4 BACK TO DIFFERENTIAL EQUATIONS

How would we solve the problem

du
au . = ?
ax cu . u(0) 1 ? (2.34)
DE initial
condition .
Easy: QE- = -¢ dx
X
hence f f dx
1 0
? t
u is 1 when x is 0 - the initial condition,
[Ln u]Y = —c[x]¥
1 0
nu-4tnl=-c(x0 |,
£n u = -cx, since &n 1=0 ,
and finally us=e ¥ | (2.35)

(Also equations 2.34 and 2.35 show us that

d_e-CX -ox)

ax (2.36)

How do we go about solving the twin set:

du
dx

dv
dx

il
'—I

= ~cu , u(0)
? (2.37)

gu-hv R v (0) 1

Well, we know that the solution of the first equation is simply

-cx
u = e
hence dv = ge_cx—hv (2.38)
dx ! !

Hindsight (maybe this was the name of the old maths textbook with the

cover missing) suggests the following manipulations:

%% + hv = ge CX; then we multiply by ehx (why? Why not!)
hx g2-+ heh vV =g e(h-c)x (and we will assume that h # c) ,

but the chain ruile tells us that

2.10

hx
d hx . _ hx, dv de
e v =e)+ (G v |
= ehx %§-+ h ehx v (it is becoming clear now)
d . hx = (h-c)x
dx (e7v) = ge

Integrating the above we get

% d hx X (h-c)x
[Tx (e "V)dx = g -[e dx
x [(h-e)x}
- d{(h-c)x]
(— g ‘/0‘ e _ h—c) >
i hx]x _ e(h—c)k}x
e v . g e .

g (h~c)x
h-c (e -1)

and then ehxv -1=

The final manipulations are of the 'home straight' variety:

hx _ g g (h-c)x
e vy (1 h—c) + il

h~c-g g (h~c)x
h-c + h-c © i

- h-c—g -hx g ~CX
v (e)e +(h—c)e , (2.39)

which is the desired solution.

For this Summer School, the equations are even more involved and so
we bring in computers to help us solve them (numerically rather than

analytically).

2.11

APPENDIX 2A

SOME BASIC FUNCTIQONS FOR MICROS IF NOT PROVIDED

(1) x' = vVx
Input argument variable X
Uses variables X,Y,Z
Output variable X
Calling procedure

GOSUB 31005 - normal
or GOSUB 31010 - if /fx] required
or GOSUB 31015 - if x known to be non-negative
or GOSUB 31020 ~ above and y = vx is available as a guess
or GOSUB 31025 ~ above and x known to be non-zero.

BASIC coding based on Newton-Raphson method.

31000 REM X=SQR(X)
31005 IF X<0 THEN PRINT "SQR ERR";X
31010 X=ABS (X)
31015 Y=X
31020 IF X=0 THEN RETURN
31025 Z=1E38:GOTO 31035
31030 Z=Y
31035 Y=(Y+X/Y)/2: IF Y<Z THEN 31030
31040 X=Y : RETURN
(i1) x' = e®

Input argument variable X
Uses variables V,W,X,Y,7

Output variable X
Calling procedure
GOSUB 31105

BASIC coding based on square root method of a previous Summer

School (reference on next page)*

31100 REM X=EXP(X)
31105 IF X>87 THEN PRINT "EXP OVER"; X : X=1E38 : RETURN
31110 IF X<;87 THEN PRINT "EXP UNDER"; X : X=0 : RETURN

31115 V=INT (X+.5) :W=(X-V) /12 : X=14+3*W*W : GOSUB 31015

2.12

31120 X=(2%W+X) / (1-W) : X=X*X*X*X

31125 IF V=0 THEN RETURN

31130 v=2,718282

31135 IF V<0 THEN V=-V : Y=1/Y

31140 FOR W=1 TO V : X=X*Y : NEXT W : RETURN
(ii1) x' = £fn x

Input argument variable X
Uses variables V,W,X,Y,Z
OQutput variable X

Calling procedure

GOSUB 31205

BASIC coding based on square root method of previous Summer School*

31200 REM X=1L0G(X)

31205 IF X<=0 THEN PRINT "LOG ERR"; X:X=-1E38 : RETURN
31210 V=1 : ¥=X

31215 W=¥ : GOSUB 31025

31220 IF W<,8 THEN V=V*2 : GOTO 31215

31225 IF W»1.3 THEN v=V*2 : GOTO 31215

31230 X=6% (W-1)*V/ (W+4*X+1) : RETURN

(iv) x' = x’
Input argument variables X and Y
Uses variables U,V,W,X,Y,Z
Qutput variable X
Calling procedure

GOSUB 31255
BASIC coding using earlier routines
31250 REM X=X1Y
31255 U=Y : GOSUB 31205 : ¥=U*X : GOSUB 31105 : RETURN

* Newton, P.J.F. ed. [1977] - Down but never out - the mathematics
and computation of exponentials arising in the fields of physics,
chemistry, biology...AAEC/S19.

CHAPTER 3
MATHEMATICS OF SOME RANDOM PROCESSES

Lecture by

B.E. CLANCY

3.1

3.2

3.3

3.4

3.5

3.6

3.7

CONTENTS

THE MONTE CARLO METHOD AND RANDOM NUMBERS
PSEUDO-RANDOM NUMBERS

RANDOM WUMBERS OTHER THAN R = U(0,1)

THE PROBLEM TO BE SIMULATED

GENERATION OF A LIFE HISTORY

ESTIMATION OF FLUX OUTSIDE THE SHIELD

THE STMULATION PROGRAM

Page
3.1
3.2
3.3
3.4
3.6
3.7

3.7

3.1 THE MONTE CARLO METHOD AND RANDOM NUMBERS

occur, the outcome of which cannot be predicted, The life history
construction procedure must, however, make this prediction; in s computer
simulation, this is done by choosing a random number from some distri-
bution and letting the value of that number decide the outcome,
The simplest situation for random number generation - and the basis
of all other situations -~ ariges when we have to select a number R in
the range 0 < R < 1, In a perfect selection procedure, no number (in
the range 0 to 1) should be more likely to be chosen than aﬁy other
number in the range; this should be true irrespective of how many
numbers have been chosen before, and the size of one number chosen
should not depend on the size of the previous number selected, We
formalise these intuitive ideas with the language of mathematics and
describe the way in which values for the random variate R occur in terms
of a probability density function (p.d.f), f(x). We say f(x) is a
probability density function for the random variate R, 1if
. (1) £(x) 1is never negative, and
(ii) the probability that any selected R will lie between x; and
X2 1s equal to the area under the curve ¥y = f(x) between
X1 and x,

These can be stated more formally

. (1) f(x) 2 0 for all x }
X2 3.1
. (ii) f(x)dx = P(Xl <R < x5)
/

The second Statement or equation is sometimes stated in the form
(iii) the probability that any selected R lies in the range

X, xtdx is f(x)dx as dx -+ 0

or f(x)dx = P(x < R < x+dx) 3.2
For our basic random number generation problem, the probability

distribution function f(x) is defined by

f(x) = 0 x<0
f(x) = 1 D<x<1 3.3
f(x) = 0 1< x

and R is then said to be uniformly distributed on the open interval
(0,1); this is sometimes abbreviated to R = U(0,1).
3.2 PSEUDO-RANDOM NUMBERS

Computer generation of random numbers for this basic distribution
is gimply not possible - in part, for the reason that only a finite set
of all possible real numbers in the range 0,1 can be represented on a
digital computer. What has to be done is to accept a gecond best situation
where, at request, the computer generates numbers in the range (o,1)
which, to all intents and purposes, seem O have been chosen according
to the probability density function of equations (3.3), such numbers
being called pseudo-random.

A number of techniques for generating a sequence of pseudo-random
numbers have been tried in the past. Nowadays, the usual technique 1is
the congruential method; this method generates numbers which seem to be
chosen at random from the fractions

1 2 3 4 m-1

— s T s Ty 3t

m’m’m’m 1 i
where m is a fairly large integer. What has to be donme is to generate a
sequence of numerators for the fractions. In the congruential method,
we choose an integer nultiplier j < m, a starting integer i; < m and
compute 1z, 13 «eey successively by the procedure

i, j.1iy (mod m)

i = j.iz2(mod m)

Here p = q{mod m) merely means that p is the remainder when ¢ is divided
by m. For example, if the modulus m is 7, the multiplier j is 5 and the

starter i; is 3, the sequence becomes

3 (the starter)

1 (5 x3=15 =2x7+1)
5 (5x1=5 =0x 7+ 5)
4 (5 x 5= 25 = 3 x 7+ 4)
6

2

3

and the sequence then recycles.

3.3

We could thus generate the sequence of pseudo-random numbers 3/7,
1/7, 5/7, 4/7, 6/7, 2/7 with period 6. There are not really enough of
these, so the random number generator which is provided for you on the

IBM360 computer uses

modulus m = 2% (=281474976710656)
multiplier j = 452807053
and starter 1, depending on the time of day when the
sequence is started.

3.3 RANDOM NUMBERS OTHER THAN R = U(0,1)

With an established procedure for selecting values for our basic
uniformly distributed variate R = U(0,1) it is simple to select values
for other uniformly distributed variates. TFor example, if we need
values for a variate uniformly distributed on the interval (3,4), we
would generate R, as before, and add 3.0 to the result; 1if we wanted
our variate uniformly distributed on the interval (0,2) we would generate
R and multiply by 2.0 . 1In the simulation problem you will be studying,
a variate U will be needed which is uniformly distributed on the interval
(-1,1); and here it is clear that we generate R, multiply by 2.0 and
subtract 1,0 from the result to get u = U(-1,1).

Generating values for random variates not uniformly distributed is
a little more complicated. Rather clever methods have been developed
for some distributions but, on this occasion, we will consider a general
method for generating a value for a random variate X with a probability
density function f(x). If the p.d.f. is such that values for X less

than 'a' are impossible, then the equation

X
f f(x)dx = 1-R [=U(0,1)) 3.4
a .

is the key to the generation procedure. If we can carry out the inte-
gration and solve the resulting equation for X, the solution gives us a
recipe for generating the required values,

An important example which you will need later arises when the
p.d.f. is defined by

It

f(x) 0 . X0
flx) = Se_'Sx x>0

with S as a known positive constant.

3.4

Equation 3.4 is now

X ~8x
Se dx = 1-R
0

Since -Se_sx is the derivative (with respect to x) of the exponential

. -5x . .
function e S , we carry out the integration to get

[—e_sx]§ 1-R
—e_SX+1 = 1-R
R e"Sx = R
< _ 1_oge(R)) s

S
In a few words then, to generate values of X for this p.d.f. f(x) =
Se X, we generate a value R from U(0,1), take its logarithm to base e
and multiply by -1/S. Because R is less than 1, its logarithm will be
negative and multiplication by -1/8 will give a positive result.

3.4 THE PROBLEM TO BE SIMULATED

The simulation problem with which you will be concerned during much
of the school arises from a need to design a suitable shield, i.e. one
in which the radiation dose beyond the shield is reduced to 1 per cent
of that with no shield. Experiments done with one, two and three steel
slabs will suggest a suitable thickness - number of slabs - to achileve
this, but in the nuclear area it is always essential to calculate the
resulting system using our knowledge of the physical processes taking
place. We do this by simulating the physical system - as we know 1t -
on the computer,

In real life an enormous number of neutrons will enter the shield
every second, and no two of these will behave in exactly the same way.
However, they all travel through the same environment, they are at each
stage of their history subjected to the same laws (probabilistic laws)
and large groups of them behave in roughly the same way. You will have
seen that of those neutrons entering a single slab shield about 50 per
cent will get through. We gimulate the average behaviour of the neutrons
by taking a group, constructing possible histories for each of them and
asserting that this group will be representative of the whole population
of neutrons. The laws which the neutrons obey in the shield are as

follows:

3.5

All neutrons travel in straight lines until they collide with
an atomic nucleus in the shield.

. The probability of travelling a distance r without colliding
is e °F where S is the total cross section,

The probability density function f(r) for collision in r,r+dr
is f(r) = Sensr.

- When a neutron collides, it has a fixed probability ¢ of being
captured and hence a probability l-c of not being captured.

. If not captured, the neutron is scattered, loses all knowledge
of its previous direction and can start off again in any
direction.

In figure 3.1, we have a section of the shield, with the horizontal
coordinate x representing the distance into the shield, which itself
lies between x = 0 and x = T. The line PQ represents the track of a
neutron which had a collision at P, was scattered and then travelled the

distance r to @ before its next collision.

q
-
®
P
I_i—*
p -
X0 Q XT

Figure 3.1
At the point P, the position of the neutron is given by x = Xps

and its position at Q is x = x The direction of the track PQ is des-

Q"
cribed by the angle O or simply by u the cosine of this angle. Since 9
can be anywhere between zero and m (0° and 180°), U will be between +1

and -1. From the usual triangle relationships, we see that

X, = X_ + r.un .

Q~ *p

3.5

10,

3.6

GENERATION OF A LIFE HISTORY

To generate a life history for a neutron we proceed as follows:

Set position coordinate x to
Zero

Set direction cosine 1 to +1

Generate a distance r to the
next collision

Change position coordinate x
to x + r.n

Test to see whether the neutron
is still in the shield

If neutron ig not in shield,
terminate history and go to

10

OTHERWISE

Neutron has collided in shield
go tally collision

Decide whether the collision
will result in scattering or
capture of the neutron. If
decision is capture, terminate
history and go to 10,

OTHERWISE

Neutron has been scattered, so
select new direction cosine y

AND THEN

Go back to 3 to continue the
history

The history of this neutron is
finished.

In the marginal comments, various integer counters have been mentioned

{neutrons enter shield from left)

(neutrons start with angle 6=0)

(select r from p.d.f. Se_sr)

where § is the total cross
section

{(if x is now < 0 neutron was
reflected;

if x is now > T neutron has
been transmitted)

{increase appropriate counter
by one)

(increase collision counter
by one)

(select R from U({0,l) and say
capture if R < ¢, where
_ absorption crosg section
~ total cross section
If captured, increase capture
counter by one)

(increase scatter counter by one,
gelect U from the p.d.f.

fF(u) = 1/2 for -1 < pu < +1

f(W) = 0 otherwise
i.e, select from U(-1,1) because
the neutron can be scattered into
any new direction)

— one each for collisions, scatters, captures, reflections and trans-

missions. At the beginning of your program you will set these counters

to zero,.

particular neutron,

Some of these will change during the 1life history of the

Whether any changes occur during an individual life

history is of little interest - what does matter is their values after a

3.7

large number of histories have been generated, because they provide part
of the answer to the problem we have to solve. For instance if, after
generating life histories for 100 neutrons, the transmission counter is
at 34, then your program has estimated that 34 per cent of the neutrons
would be transmitted through the shield. The values in the various
counters also provide some useful checks on the logic of your program,
Before your program can be trusted to give the right answer, the follow-

ing should be checked:

scatters + captures = collisions

captures ~ _ Scattering cross section
collisions total cross section

reflections + transmissions + captures = the total

number of neutrons which entered shield.

3.6 ESTIMATION OF FLUX OUTSIDE THE SHIELD

You will appreciate that the neutrons penetrating the shield cannot
in real life be counted like sheep passing through a race; instead an
instrument is used to detect some of the neutrons. It turns out that if
neutrons leave the shield uniformly over its area and in all possible
directions, a single counter will see and detect less of the neutrons
which come out at right angles to the shield plane than those that come
out at other angles. Also it sees more of those coming out in directions
almost parallel to the shield than those at intermediate angles. The
detector is a device for estimating neutron flux. Your simulation pro-
gram must allow for this fact and one simple addition must be made to
the procedure for generating a neutron history. One additional counter
is necessary - set to zero at the beginning of the program like the
others. When the program decides (at step 5 in Section 3.5) that a
neutron has been transmitted through the shield, we increase this
counter (a flux counter) by the real number 1.0/, where p is the direc—
tion cosine of the neutron track as it leaves the shield. At the end of
many histories, the flux counter will contain a real number which should
be proportional to the neutron flux measured by the physical detector.
3.7 THE SIMULATION PROGRAM

On the basis of what has gone before, the structure of your simu-

lation program is relatively simple; essentially it has six steps

3.8

1. Define values for total cross section of shield material,
capture cross section of shield material,
thickness of shield, and
number of neutrons which will enter the
shield.

2, Calculate ¢ = ratio of capture cross section to
total cross section, and
incident flux at inside of shield =

number of neutrons which will enter shield.

3. Set all counters to zero.
4. Generate history for neutron 1, as described in Section 3.5
2.
etc., until all histories have been generated.
5. Print out values for all counters.
6. Calculate and print out ratio of transmitted flux to incident flux,.

Having written and run your program, find the errors and start

again. Good luck!

CHAPTER 4

NEUTRON REACTIONS AND REACTORS

Lecture by

J.W. CONNOLLY

4,1
4.2
4.3
4.4
4.5

4.6

CONTENTS

INTRODUCTION

NEUTRONS

NUCLEI

NEUTRON-NUCLEI REACTIONS

RATES OF NEUTRON-NUCLEI REACTION

THE NEUTRON ATTENUATION EXPERIMENT

Page

4.1

4.1

4.3

4,4

4.1 INTRODUCTION

The experiment you will perform during this Summer School will be
to measure the attenuation of a beam of neutrons passing through an iron
slab., To understand the physical significance of the equations you will
use to analyse this experiment, it is necessary to introduce some simple
ideas about neutrons and their interaction with nuclei.

4.2 NEUTRONS

For our purposes, we can consider neutrons as spheres of mass 1.66
x 1072% g (~ 1 atomic mass unit) and possessing kinetic energy 1/2 mv? by
virtue of their velocity v. (We will see later that v is a vector
quantity and that the direction of neutron travel is important as well
as speed.)

Neutrons carry no electric charge and thus are not subject to
electrostatic repulsive forces such as exist between protons and nuclei.
Thus neutron-nuclei reactions are possible at low mneutron energies.

4.3 NUCLET

We can consider the nuclei of atoms to be made up of Z protons and
N neutrons. The mass number A is equal to N+Z and, since the masses of
both neutron and proton are close to unity, on the atomic mass scale,
the mass number is the integer closest to the atomic weight of the
nucleus. The atomic number Z determines the number of electrons about
the neutral atom and thus the chemistry of a particular atom. Nuclei
having the same Z but different A are called isotopes, and although
their chemical behaviour is identical their nuclear properties are not,
We denote isotope X as AXZ, I.e. the two boron isotopes IUB5 and 11B5 contain
5 protons each but 5 and 6 neutrons respectively.

4.4 NEUTRON-NUCLEI REACTIONS

Neutrons interact with nuclei in several ways. The simplest is elastic
scattering in which a neutron collides with a nucleus (which we can
consider to be stationary) in much the same way as billiard balls do - 1i.e.
the kinetic energy of the system is preserved, the neutron giving some
kinetic energy to the nucleus and moving off in a different direction

with a reduced kinetic energy:

% o O\V -V Scattering Angle

4.2

However, as a result of a collision the neutron may enter the
nucleus and give up some of its kinetic energy to increasing the internal
energy of the nucleus before the neutron escapes with a lower energy.
This process is called inelastic scattering. The nucleus loses the
excess internal energy by the emission of gamma rays.

1f the neutron does enter a nucleus, it may or may not be re-
emitted. In this case there are several possibilities. The new nucleus

might be stable, such as in the reaction
56F625 4+ n +57FE_'25 s

or it might be unstable (radicactive), decaying to a stable nucleus by
the emission of charged particles and gamma rays. The decay may be

essentially instantaneous, as in the reaction
10 7 & l‘ I}
Bs + n > 'Lis + 'Hep (o particle) ,

or it may take place with a characteristic half-life (I,) as in
P %

23Nay, + n > 2%Nay, > Mg + B+ Y T, = 15 h.

3
We call these reactions neutron capture or absorption. (In the special
case of the production of a radioactive atom of measurable half-life,
the term activation is sometimes used to describe the reaction.)

A capture reaction of particular importance is called fission.
Certain heavy elements become so unstable upon absorbing a neutron that
jnstead of returning to stability by the emission of a few particles,
the nucleus breaks up into two new (and lighter) nuclei and several
neutrons. The new nuclei are called fission products; these are
usually very unstable and form stable nuclei by the emission of 8
particles and gamma rays. The neutrons released can cause further
figsions and it is the production of neutrons in fission that makes a
chain reaction possible.

Such a chain reaction, althougﬁ of scientifiec interest, is of more
importance because each fission event is accompanied by the release of a
large amount of energy. This energy release appears because the mass of
the fission products and the liberated neutrons is somewhat less than
that of the original nucleus plus the neutron. The energy equivalent of
this mass difference is given by

E = mec”

and mostly takes the form of kinetic energy of the fission products,

4.3

subsequently appearing as heat as they céllide with nuclei in their
vicinity. About 200 x 10° electron veolts of energy is released per
fission; compare this with about 10 eV for chemical reactions per
molecule. (The energy unit, the electron volt (eV), is defined as
follows. The volt is the potential difference requiring an energy of 1
joule to transfer 1 coulomb of charge across it. If we define the
electron volt as the energy required to transfer one electron (charge =
1.6 x 10719 coulomb) across a potential difference of one volt, then 1
eV = 1,6 x 10°1° joule.)

4.5 RATES OF NEUTRON-NUCLEI REACTION

Neutron physics is primarily concerned with understanding the
manner and rate of neutron reactions with nuclei. Suppose we consider a
material in which there are N nuclei per em?, (Since nuclear radii are
of the order of 10"!'? cm and atomic radii are of the order of 10~ ° cm,
the material is mostly 'empty' space.) Into this material we imagine
the introduction of a uniform distribution of n neutrons per cm’
initially at rest. At time t = 0 we give each neutron a speed v but
allow the direction of travel to be completely random, i.e. just as many
neutrons travel in one direction as another, After one second, how many
neutrons will have collided with nuclei?

Intuitively, we might expect the collision rate to depend on n, v,
N and the size of the nuclei and neutrons. If we suppose the neutrons
to be much smaller than the nuclel, and the nuclei to have a cross
sectional area A, then in one second the relative velocity of the neutrons
and nuclei will define a volume NAv of nuclei space per cm® of material.
Since there are n neutrons per cm®, the number of nuclei-neutron col-
lisions will be NA nv per second in each cubic centimetre of material.
We call the quantity nv (dimensions of cm? s”!) neutron flux and NA
(dimensions L™ !) the macroscopic cross section of the material. The
number of collisions per cm® per sécond is called the reaction rate.

Writing MA as I, then

Reaction rate rnv .

Thus Z is the probability of a neutron-nucleus collision per cm of
neutron travel, and is the sum of the individual probabilities that a-
collision will result in elastic scatter, inelastic scatter, absorption

or fission

=% +%5, 4+ +¢%
s in a f

4.4

4.6 THE NEUTRON ATTENUATION EXPERIMENT

In this experiment you will measure the decrease in neutron density
as neutrons travel through increasing thicknesses of iron. Initially
the neutrons are all travelling in the same direction - in what is
called a beam. The beam flux then is simply the number of neutrons
crossing a square centimetre of area perpendicular to the direction of

neutron velocity.

~ n,(x) n, (x)
nv ‘\(\ /{’
OnA8) _5n (x)

Fe

Inside the iron slab, however, neutrons will disappear in absorp-

tion reactions and have their direction of travel changed by scattering
reactions (Zf = 0 for iron). We will assume that, on average, neutrons
are scattered either forwards or backwards at the angle 0 so that their
track length through the iron slab is increased by l/cos 6 = 1/u. Thus
in the iron slab the neutron flux has three components:

. Neutrons that have not suffered a collision and are moving to
the right, that is in the original beam direction. At position
¥ within the slab, we denote the flux of these neutrons by
no{x)v .

Neutrons that have been scattered in the forward direction at
the average angle 8; these are denoted by m(x)v .

. Neutrons that have been scattered to the left at the average
angle 0; these are denoted by ny (X)v .

We now examine a small volume of unit cross sectional area and

thickness Ax within the iron slab.

nz(x)\\ P n(x+Ax)
D — 71— n(x+Ax)

X
\n2 (x+4x)

{10(X)'"‘”4'

rh(X),,/’)'
X

—_—— e P
X+ Ax

e

v; 7\

The neutron densities ng, n; and n; will be different at x and xt+ix
because of scattering and absorption collisions within the volume Ax.
These changes form the differential equations you will use to analyse the

experiment.

4.5

First let us examine the change in the flux of uncollided neutrons,
The uncollided flux at (x+Ax) is simply that at x less the number of

collisions occurring in the element Ax. That is

np (xHARIV = na(x)}v - ng(x)% Ax v
or
no {x+Ax) -ng (x) _ dng

Ax Ax+0 dx

= -~ I ng{x) . 4.1

The change in the flux of neutrons travelling to the right at the
angle 6 is a little more complicated. Because the neutrons pass through
the unit area at an angle 0, the flux is changed by the factor u and
the volume element by the factor 1/u. The flux at x+Ax of the neutrons
1s equal to the flux at x minus the total number of collisions in the
volume element Ax/M plus the number of collisions resulting in neutrons
being scattered to the right at the angle 6.

That is

np(x+HAX)v U = m(x)v u - ny{(x)v p & éﬁ

1
+-2— Zs[nl(x)v M A:—j—+ nz(%A—x)v u Ax + ngvﬂx:’ .

or

u[m(x%z})(—nl(xn} -y dm

Ax>Q dx

= % ZS ng{x) +[-§-§ - Z:Inl(x) + -;— ES na {x) .

4,2

By similar reasoning, we can obtain the change in the density of

neutrons moving to the left at the angle 0

dny Is _Is zs
ix - M ng (x) 7 "3 ny (x) + [2 —%]ng(x) . 4.3
If we now make the substitutions
1
a=12 b==X-1% c =% = at+?b
a 2 s
u = ng Vv = nptn; W = na
Equations 4.1, 4.2 and 4.3 become
du = - cu 4.4

dx

4.6

dv

u = c¢{l-p)u ~ (at+b)v + bw 4.5
dx
QL by + (atbd) 4.6
Wi = v w .

These equations will be solved with the following values of the con~
stants which are appropriate to the mild steel plates to be used for the

Summer School experiment:

uo= 0.577

a = £ =0.18 cm!, b= l‘E = 0.494 em™ !,
‘ a 2 s
and c = ¥ = Za + ZS = a+2b = 1.172 cm™ .

CHAPTER 5

ANALOGUE COMPUTING AND DYNAMICS

Lecture by

C.P. GILBERT

5.2

5.3

5.4

5.5

5.6

5.7

CONTENTS

INTRODUCTION

5.1.1 Dynamic Systems
5.1.2 Analogues

5.i.3 Simulation

5.1.4 Computing Operations
ELECTRONIC ANALOGUE COMPUTER COMPONENTS

ELECTRONIC ANALOGUE COMPUTERS
5.3.1 General
5.3.2 Egquation Solution

PROBLEM SOLUTION
HYBRID COMPUTERS

STMULATION OF THE SHIELDING EXPERIMENT
5.6.1 Basic Representation
5.6.2 Can Time Go Backwards?

5.6.3 Function Storage and Replay

EXPONENTIALS AND EXPERIENCE

5.7.1 Increasing Exponentials

5.7.2 Populations

5.7.3 The Really Super Important Problem

5.7

5.9

5.11
5.11
5.13
5.15

5.16
5.16
5.18
5.19

5.1 INTRODUCTION

5.1,1 Dynamic Systems

Many advances in science and enginegring are possible only because
of our ability to use mathematical equations to describe the behaviour
of complicated systems.

llere we are mainly concerned with what are known as dynamic systems,
i.e. those that vary with time, which are usually described using dif-
ferential equations. An example of a dynamic situation is the movement
of a ball bouncing on an uneven surface and, if necessary, equations
could be formulated to describe this motiom.

Having derived methods of representing dynamic systems, it will be
shown that they can be used for other types of differential equations.

5.1.2 Analogues

-When dynamic systems are examined in detail, one important property
emerges., Many electrical, mechanical, biological and other systems can
be described by equations of the same form, although the actual numbers

involved may be different in each case. Figure 5.1 shows simple examples

(a) (b) (¢)

L
=
di _ _ R, v _ _ ¢ do H
dt L' T - " wo
Figure 5.1 {(a} Current i in an inductive circuit.

(b} Velocity v of a fiywheel with a brake
. (¢} Temperature 6 of a cup of hot water

of three systems, each with energy decay. The current i in an
inductive circuit, the velocity v of a flywheel with a brake, and the
temperature O of a cup of hot water which is cooling down, can all be

described by equations of the form:

%%— -Kx . (5.1

Systems which resemble each other in this way are called analogues
of one another and, if each is given an equivalent disturbance, they
will all behave in exactly the same manner, although at different
speeds,

Thus although the three systems are different in physical form,
their dynamic properties are identical. There is then the possibility
that we can examine one of them (that happens to be convenilent) in order
to find out how the others behave. As we shall see, this can assist us
with the solution of very complicated sets of differential equations.

5.1.3 Simulation

One way to examine the dynamic behaviour of a nuclear reactor, say,
would be to do the following experiment. A disturbance would be purposely
injected, and the reactor power and temperature would be measured as
they varied with time. Unfortunately, with a full-size power reactor
the experiment would be slow, very expensive and possibly dangerous.
However, if we could find some sort of analogue of the reactor (i.e. another
physical system, or model, having the same dynamic behaviour), then it
would be much simpler, safer and cheaper to do the same experiment on the
analogue. This idea has been found to be so successful in some applications
that instead of looking for convenient analogues in a haphazard way, special
pileces of equipment have been built solely for this purpose.

These analogue computers, as they are called, consist of a number
of units which can be put together like building blocks to form analogues
of different systems; accurate measurements can then be made on the
resulting model. The process of doing an experiment on a computer model
instead of on the real system is known as simulation.

5.1.4 Computing Operations

As will become clear, addition and integration are the most impor-
tant processes that an analecgue computer has to perform, and a number of
methods are possible.

Figure 5.2(a) shows how addition can be performed using a liquid;
if the contents of the smaller containers are emptied into a sufficiently
large container, the final volume of liquid is the sum of the initial

volumes:

V = vy + vy + vy + vy + vg .

5.3

+

iy

2 schoonersg
a.\ F
w [
1 t
H H = ry F dt
[+
= Area = A
WoW!
V1V +V 340, 4V

{a}

Figure 5.2 Liquid analogues for (a) addition, using
volumes, and (b) integration

The more important Process of integration can be achieved as showp
in figure 5.2(b). The height H of the fluid in a container of base ares
A is the integral, with respect to time, of the fluid flow F (volume/

second) as determined by the tap:

t
1 v/f
H = = I dt .
A o

These simple analogues would be of little use in Practice; they
are slow, unsuitable for interconnection, and the variables are difficult
to measure accurately, However, there are much better analogue processes
available, the most useful of them using an electronic amplifier as
described in the follpwing Ssection.

5.2 ELECTRONIC ANALOGUE GOMPUTER COMPONENTS

There are only three analogue components that we need to understand
at this stage, the first being an electrical component the others

being based on the use of electronic "operational' am lifiers.
P

5.4

in which the input voltage V is reduced to aV at the output, with
0< a< 1.0. The potentiometer is the only adjustable element in an
analogue computer.

The second component to be considered is the adder, whose output is
the algebralc sum of a number of input voltages., The output voltage 1s
inverted, i.e. a positive input gives a negative output and vice versa.
Fach individual input may be increased by a factorx of ten if desired,
but unless defined otherwise this gain is assumed to be unity.

Figure 5.3(b) shows the conventional representation of an adder

which, with the potentiometers, gives the relationship

v = - [0.3 vy, + 1.6 ve val (5.2)

0
Note that all voltages are measured with respect to earth although the
earth connection is not shown. The voltages may remain at a fixed level

for many seconds, or may vary at any frequency up to about a MHz.

0.3

' . 03 v,
0,16
W = O LI g L LI [l Yo
¥a

) 2 <l Vuz-[0.3v,+l.5v,w,]

(a) A potentiometer {b) An adder, using an 'operational’
amplifier

AR

ﬁ__%&-m“‘ - _///
_4¥o }

(c¢) An integrator, using an
'operational' amplifier (d) Integrator wave forms
Figure 5.3 The conventional diagrams for the main computing components
Finally, the most important component is the integrator, shown in
figure 5.3(c). Like the adder, it inverts and may increase the input
voltage by a factor of ten if desired. For the circuit shown, the

performance is defined by:

3.5

t
V. = -0.6 f vy dt
o]
o

dv
0

or _F = 0.6 Vi . (5.3)

Thus a constant value of Vi causes the output voltage to change at
a constant rate (figure 3.3{(d)), a sine input gives a cosine output and
§0 on. More than one input voltage can be applied, the output then
being minus the integral of the sum of the inputs.

Accuracies better than 0.1 per cent can be obtained without dif-
ficulty using analogue components of the type discussed,
5.3 ELECTRONIC ANALOGUE COMPUTERS

5.3.1 General

An electronic analogue computer consists of a number of components
suitable for addition, integration, multiplication and a range of other
functions; facilities are provided which permit the interconnection and
switching of the computing circuits, and which allow accurate measure-
ments to be made on them. The problem variables in which we are interested
(flux, velocity, concentration, temperature or force, for instance) are
all represented in the computer by voltages. These voltages may vary
quite slowly, and can then be read on a voltmeter, or they may change so
quickly that an oscilloscope is required to observe them.

A medium-size machine might have about 100 operational amplifiers,
including perhaps 30 integrators, and could thus perform 30 integrations
at the same time. Also, most analogue computers have a number of logic
elements such as gates, monostables, etc. This patchable logic can be
interconnected to suit any given problem.

5.3.2 Equation Solution

Consider the circuit of figure 5.4. The extra input on top of the
integrator is inverted and supplies a fiwed voltage b to the output as
an initial condition before the integration starts, but has no other
effect. When switch A is closed, this defines the instant which the
computer regards as t = 0, and at this time the output V = b, Because
of the potentiometer, the integrator input is AV, and so the cirecuit

obeys the equation

- =X 2w or = =)V . (5.4)

5.6

Switch A closed

“Initial condition b ——

A Ab —mm—m— o
v
dt
A) 0
-
A { i
t=0
, - : dv : ’

Figure 5.4 A circuit for the solution of =— = - AV and typical

waveforms. The input via b on?$ provides the
starting voltage

This is of the same form as equation 5.1, which describes the systems of
figure 5.1, and so the circuit of figure 5.4 is simply one moxe analogue,
having the same dynamic properties as the other three systems. As you
know from a previous lecture, the solution to equation 5.4 is an expo-
nential: if we let V = ke—At, where k is an unknown constant, then

differentiating we get

dav -At
e -Ake = =AV s
which is the same as equation 5.4. This demonstrates that V = ke_kt is

a solution of equation 5.4. Since we have made V

b at £t = 0, substi-

tution shows that k = b, and so the solution is V be_xt.

[}

The cireuit of figure 5.4 'solves' equation 5.4 by producing a
voltage proportional to be_)\t each time switch A is closed. V starts
off positive and, via the integrator, forces itself to get smaller. As
it does go, its rate of change also gets smaller, which is precisely
what equation 5.4 tells us in a more compact way.

Switches such as A and many other controls required by the computer
are usually omitted from the computing circuit diagram - their presence
is assumed.

Summarising, if we should wish to examine one of the systems of
figure 5.1, possibly with a very complicated series of disturbances, the

simplest and most accurate way of doing the experiment would be to apply

5.7

a voltage representing the disturbances to the circuit of figure 5.4.

5.4 PROBLEM SOLUTION

To obtain the above solution, we started with a computer circuit
and analysed its behaviour. The usual process is the other way round -
we are given a set of equations and have to design a circuit which will
solve them, resulting in the process 1llustrated in figure 5.5. The
equivalence between the physical system and the analogue circuit is very
marked, and examination of the behaviour of the latter, used as a
working model, provides considerable insight into the operation of the
original system, In fact, one major advantage of simulation is that it
may provide a means of learning and, in some cases, simulators behave so
much like the original system that they are used to train operators,
Such training simulators are widely used in the nuclear and aircraft
industries and, although originally they used analogue computers, they

are now more frequently based on digital computers.

Mathematical statement
of problem
dx _ _
a-t— = AX
Problem X .

formulation %% = Ax - uy Circuit

dz _ -

Jr = Wy - Bz
Physical Analogue
problem ‘_ > computer circult

(figure 5.6(a)) - - (simulator,

figure 5.6(b))

Direct equivalence

Figure 5.5 Pictorial representation of the analogue
method of problem solving

As an example of the process of figure 5.5, consider the series of
tanks in figure 5.6(a), each having a drain hole through which it leaks
into the next tank. The depth of water in the first tank is X, and the
surface moves (or the depth changes) with velocity dx/dt, which depends
on the flow of water in and out. For the first tank the inflow is zero,

although the experiment starts (the plug is pulled out) with an initial

5.8

depth X The outflow depends on the size of the hole, denoted by A, and

the depth (i.e. pressure) of water. Thus

velocity of surface = inflow - outflow
dx
i.e. il 0 - Ax ,
dx
or ic - -Aix (5.5)

with the initial condition x = X at t = 0. By comparison with equation
5.4, we know that x will fall exponentially.
However, the second tank, which starts empty, has an inflow from

tank 1 as well as the normal outflow; its rate of change of depth is

thus

dy _ -

at Ax Hy ’ (5-6)
with y = 0 at t = 0. Similarly for the third tank

dz

dt = Hy - BZ » (5-7)
with z = 0 at t = 0, and one could go on indefinitely.

This system of tanks gives a very clear idea of how one radiocactive
material decays into another, which itself decays (at a different rate)
into a third, because the equations describing that situation are
identical to equations 5.5 to 5.7, i.e. the two systems are analogous.

Our simple exponential solution only fits the first tank, the
change in depth in the others being complicated by their varying inflow.
However, we have successfully formulated the problem of figure 5.6(a),
and can now go on to design the computer circuit.

From figure 5.4, we know that we can solve equation 5.5, using
integrator 1 of figure 5.6(b) to represent tank 1. The potentiometer
introduces A, the size of the drain hole (or the decay constant of a
radionuclide).

Consider now equation 5.6. Let us assume that a signal repre-
senting -uy is available; then with the existing Ax signal we can make
up dy/dt. This is integrated (and inverted) in integrator 2 to give -y,
and so we can supply the wanted -uy signal from the potentiometer. The
circuit of integrator 3 solving equation 5.7 can be found in exactly the
same way except that the signs are all reversed, and so we have developed

an analogue computer circuit to simulate the water levels in the three

5'9

Xg
¥
et dx X
1 KRR AK - gp I
4 0.0.:01
A : ' N
‘
L]
: AX
1
dy -Y ¥
2 Pevawavaviy SR . - i
\‘.s’:’o‘\?ofofo?o?o?o?f MR- uy =i Z 4
f73
‘ .
: “
1
1 -uy b
L]
BTeTAYAY, V. o b —
{0::’0’::0:9:0:::;:0:0;1
T RN :
SRS I _ dz 3 . z
1z P
t
! 8
]
|
! Bl o
! -
(a) ()

Figure 5.6 (a) A problem in hydraulics
(b) A simulator to represent the problem

tanks. An inverting amplifier (4) allows ¥y to be viewed the right way
up.

Notice from the demonstration that all the computing operations
occur simultaneously (in parallel) not in sequence as in a digital
computer, and that the solution arises at a definite speed, i.e. the
same speéd as the levels in the tanks in our case. By using smaller
capacitors in the integrators, the problem can be solved at least 1000
times faster and, if many integrations are involved, the overall opera-
tion is much faster than can be achieved by a digital computer. How-
ever, this high speed cannot be properly utilised by a.human operator.
5.5 HYBRID COMPUTERS

A fairly recent development is the hybrid computer, which consists

of an analogue computer, a general purpose digital computer, and an

5.10

interface, The latter provides the facilities required for the two

machines to cooperate effectively (figure 5.7).

ANALOGUE DIGITAL

r
INTERFAGE

IFIALGT.B) N =2t
Yil) «=Sii(X)
TYPE 'ANSWER=".Y(1)

Figure 5.7 A hybrid computer

The analogue computer allows high speed, parallel computation. The
digital computer can be programmed to:
. Perform the scaling calculations, and check the connections of
the analogue circuit and the settings of the potentiometers.
Act as a very high speed operator which readjusts the computer
before each solution, as determined by the preceding solution.
. Perform parts of the computation which the analogue computer
finds difficult,
One might also express the same idea by saying that the analogue com-
puter becomes one of the peripherals upon which the digital computer can
call when required.
As an example, suppose we wanted to find the value of A for an
experimental result thought to be an exponential. The operator could
use the circuit of figure 5.4 and, by comparing the output with the

wanted curve, adjust the potentiometer to get a better fit.

5.11

After a number of trial and error solutions he could get a reason-
able match and the value of A would be given by the potentiometer
setting. This process would be tedious and inaccurate when performed
manually. However, with the digital sectiop of the hybrid computer
performing the comparison and resetting the analogue section, many trial
solutions would be performed in one second, and an accurate result could
be obtained very quickly.

Another application of a hybrid computer is described in the next
section.

5.6 SIMULATION OF THE SHIELDING EXPERIMENT

5.6.1 Basic Representation

In Chapter 3, equations were introduced to deseribe the bulk
behaviour of a large number of neutrons as they passed through a series

of iron shielding plates. The equations are restated:

du

'& -cu N (5.8)
dv

M = c(l-1Wu - (atb)v + by . (5.9)
dvw ~bv + (atb)w (5.10)
dx !)

with u(0) = v(0) = 1 (i.e. normalised to unity), and w(X) = 0.

X is the total thickness of the plates, and we wish to find v at X, i.e. the
fraction of the neutrons which eventually arrives at the detector (figure
5.8).

Superficially, these equations are very similar to equations 5.5 to
5.7 for the water tanks, and it would be convenient if it were possible
to solve them using the same sort of approach.

The most obvious difference between the two sets of equations is
that the independent variable in the tank equations is time t (as it is
for the analogue circuits) whereas for the neutrons, the independent
variable is distance x. We are already familiar with the idea of a
computer voltage representing the depth of water or, in this case, the
fraction of neutrons, so we can consider letting computer #ime represent
problem distance, the relationship being, say,

1 second = 1 centimetre.

We know in practice that time can only change steadily at a fixed
rate and, provided that we are satisfied with x changing in the same

way, there is no difficulty. One method is to start the computer at

5.12

PLATES

SCURCE DETECTOR

o | QU X
(] t — T
1--4d--
—_— -

Figure 5.8 Values of u - number of source neutrons moving to the
right; v - total number of neutrons moving to the right;
and w - number of neutrons moving to the left (backwards).
Ten samples such as v, va, v3,.... are taken for each
plate, but for clarity they are shown more widely spaced.

t = 0 at the neutron source (x = 0) and sweep steadily through the
plates at a fixed speed of I cm/sec until t = T at the detector (x = X)
as in figure 5.8. Unlike the Monte Carlo calculations, the variables
would be available for all values of t, although in this case we are
mainly interested in the value of v at the end of the run when t = T.
To make this change, t is formally substituted for x in equations
5.8 to 5.10; the opportunity is also taken to divide the second two
equations by | and then to simplify the coefficients. These changes

result in the equations:

—g—!‘é— = -1 » (51]-1)
dv _

i - eu- fv+gw , (5.12)
dv -gv + fw , (5.13)

dt

where e = c(l-w/u , '
£ = (atb)/u ,
and g = b/u.

We must also remember the initial conditions
u(@ = v(0) =1 atg¢=0 |
and the terminal condition
w(T) = 0 att =T,

5.6.2 Can Time Go Backwards?

The equations now look even more like the tank equations, and it ig
disappointing to find that they still cannot be solved in the same way.
The most important difficulty is that in equation 5.13 the fw term has
the 'wrong' sign.

It might be thought that this could be dealt with simply by using
an adder to invert the signal (like adder 4 in figure 5.6), but physical
reasoning will bring out the difficulty.

In an equation similar to 5.7, considering only the z terms we have

g% = ve. - Bz ...,
which has the same sort of behaviour as the original equation 5.1. From
Section 5.4, we recognise that the Bz term represents the drainage from
the third tank of figure 5.6(a): the greater the depth z, the faster
the water runs out, i.e. the larger the rate of change in depth in the
negative sense.

Consider now

dz
dt

= ... +8z

which has the same form as equation 5,13. The rate of change of depth
is now positive, i.e. the tank fills up. Further, the greater the depth
of water, the faster the water pours in through the drain! Even if the
tank contained only a single drop (molecule?) of water to start with,
before long a 'drain' of this sort would force the tank to overflow.

For convenience we will call this curious device a negtank¥,

* A system of this sort is said to be unstable, and it might be thought
that such things could not arise naturally. It is true that they cannot
behave in this way for very long, but systems with these characteristics
do arise in some circumstances, as discussed in section 5.7.

5.14

The problem is that one can never get a tank completely empty; or,
in more practical terms, an analogue integrator which is connected to
represent a negtank can never have its initial condition made exactly
equal to zero, nor its input signal correct within fractions of a micro-
volt, and so such a circuit tends to overload long before the compu-—
tation is complete. A demonstration will illustrate the difficulty
(which is not confined to analogue computers).

Let us think about this unexpected behaviour. If we had a normal
tank and made a film of the water draining out, the film when projected
would show water rumning out of the drain at a rate determined by the
depth in the tank. If now the film was run backwards, it would show the
tank starting empty and filling up at a rate which increased as the
water got deeper, just like a negtank!

Thus one way of thinking about the negtank's curious behaviour is
that it is the same as a normal tank working backwards in time.

Now we know that we cannot really make time run backwards but, as
you will see, we can easily solve some equations as though time was
going in reverse. In the physical system under discussion (figure 5.8),
time going backwards simply means that equation 5.10 is solved for w from
the detector (x = X) to the source (x = 0) and, since w in fact represents
the neutrons moving in this direction, it is an entirely natural thing
to do.

It would appear possible then to represent things like negtanks
with time running backwards. Thus, starting with equation 5.10, we
substitute —T for x and, making the same simplifications as before, we
end up with:

dw

I gv - fw (5.14)

in which the fw term has the required sign. .Not only can this equation

be solved easily, but also the initial condition is known. Thus at
T=0, x=Xand w(iX) =0

and so
w(0) = 0 for T = 0 (figure 5.8).

Summarising then, we can solve equations 5.11 and 5.12 forwards,
and equation 5.14 'backwards'. Unfortunately, the w signal found from
equation 5.14 cannot be fed directly to equation 5.12 because it is

generated in the wrong direction, and v from equation 5.12 cannot be fed

5.15

directly to equation 5.14 for the same reason.

5.6.3 Function Storage and Replay

This final problem cannot be overcome in a simple analogue com-
puter, but a straightforward solution is possible using the storage
facilities of a hybrid computer. In this, the appropriate analogue
signals are sampled ten times as we integrate through each plate, and
these values are stored in the memory of the digital section of the
hybrid. At some later time, these values are replayed to the analogue
circuits in the reverse order to that in which they were stored (figure
5.9).

The equations finally solved are derived from equations 5.11, 5.12
and 5.14. Where necessary, v and w have been replaced by v' and w'

which are the stored and replayed versions of v and w respectively.

g% = —cu , (5.15)
dv \
It = eu - fv+gw , {5.16)
%g- = gv' - fu R (5.17)
with u(0) =v(0) =1 at et =20
and w(0) =0atT=0
STORE Y REPLAY |-
v ey W o ﬂﬂ
t l Y tl Wiea
(FORWARDS)
1 T < rBACKWARDQ
v R e T W, - W
- REPL AY STORE
Y‘r—u w‘
v, v,

Figure 5.9 Function storage: the series of values shown in Figure 5.8
are stored in the digital computer. During a forward
stroke (0 < t < T) v is stored and w' is replayed. Dur ing
a backward stroke (0 < T < T) v' is replayed and w is stored

5.16

. The computer circuit is shown in figure 5,10, with integrators 0
and 2 solving equations 5.15 and 5.16 respectively, and integrator 5
solving equation 5.17

Instead of simply rumning once, the computer alternates between
running forwards from O to T with only integrators 0 and 2 operating,
and backwards from 0 to T with only integrator 5 operating. The individual
analogue operations are exactly as described previously, and the digital
computer is programmed to manage the timing, switching, storing and
replaying processes.

On the first forward run (figure 5.11), equations 5.15 and 5.16 are

solved with respect to t, thus generating u and v, the latter being
| stored. w' is replayed from the digital computer but, since its correct
value is not yet known (it is set to zero initially)}, the values of v
are certain to be in error. Next the machine runs backwards, solving
equation 5.17 with respect to T. The stored values of v are replayed in
reverse as v' and, although they are in error to some extent, integrator
5 generates values for w which are stored.

On the next forward run, this stored signal is replayed in reverse
as w', and allows a more accurate solution for v to be stored. This in
turn enables a better solution for w to be found in the next backward
run, and so on. After about 12 cycles of iteration the functions con-
verge, iI.e. there is no change from one run to the next, indicating that
the correct sclution has been obtained.

All that remains 1s to measure the value of v at t = T in order to
find the fraction of neutrons arriving at the detector. If this frac-
tion is too high, an additional plate must be considered and so a larger
X, and hence T, must be used in the next set of solutions.

Summarising, this is a fairly complicated technique for solving the
original equations, although once set up it is simple to use, as the
demonstration shows. It would be used in practice only if it was
important to know the neutron density throughout the iron shielding
plates, not just the fraction of neutrons getting to the detector.

5.7 EXPONENTIALS AND EXPERIENCE

5.7.1 Increasing Exponentials

In the previocus section, we noted the curious behaviour of a
negtank. Although we did not pursue the matter, it is easy to show that

. ke
its output was proportional teo e t, an increasing exponential of the

5.17

{

Q.
=)

o
c
ir
I
l

(=X
=

—eU+fv—gW=-g%
FORWARDS
.'

BACKWARDS : \
dw INTERFACE |I }
Qv+ fw=- } Y,

5 w |~

T DIGITA

fw € L } COMPLIFTEfJ

Figure 5.10 The analogue circuiy for the solution of equations 5.15 -

BACKWARD _FERWARD BACKWARD FORWAE[?_ ~

Figure 5.11

5.18

type shown in figure 5.12, which can become infinitely large 1f it
continues for a long enough period.

In practice, such a response cannot continue indefinitely; it is
always terminated in some way. Thus the negtank overflowed and the
amplifiers reached their voltage limit.

Compound interest on a sum of money gives exponential growth; 5
per cent compound interest leads to a 'doubling' time of about 14 years,
although in this case the transient is usually terminated by the with-
drawal of the money from the bank.

5.7.2 Populations

Consider a colony of 100 grubs. Given sufficient food and space,
an average of 20 eggs are produced by each grub per month, of which 10
eggs hatch out and produce grubs which survive to the egg laying stage.
Remembering that the original grubs die at the end of the month, the

grub population increases by a factor of ten each month (figure 5.12)

17 —_

0+ 10 e = o o o o —————— -
s L DOUBLING TiME T

N THOUSANDS

TIME[MONTHS]

Figure 5.12 The exponential N=10032°3t showing the growth of a
population of grubs

5.19

Months 0 1 2 6 iz n
Population N 102 10° 10% 10% 19'% 1o(0*2)

(If the grubs are each 1 millimetre long, 10'%* of them placed end-to-end
would stretch for 10° kilometres! The moon is only 4 x 10° km away.)
The population curve can be fitted exactly by the equation
N = 100 ez-at’ where t is in months, and so the original differential
equation must have been |
dN
dt

Thus the grub population is expanding exponentially with a doubling time

2.3 N .

of about nine days,

The most frightening thing about such an increase is its insidious
speed. If you only observe the past (which is usually all that we can
do), it is difficult to realise Just how quickly things will change in
the future, and any delay can turn a difficult situation into an impossible
one. Fortunately for us most populations run out of food or space, are
subject to unfavourable weather changes, or are eaten by some other
animal before their numbers become tdo,alarming.

5.7.3 The Really Super Important Problem

The one population which has been encouraged to expand unchecked is
the human population. For over 300 years it has been growing more than
exponentially, i.e. initially with a doubling time of 250 yvears, but
now, at a level of over 3500 million, with a doubling time of only 33
years. '

Not only this, but the human race is using up unrenewable resources
(0il, coal, metals, etc.) and generating pollution at rates which are
also growing more than exponentially, both because of the rising number
of people and because of a rising material standard of living. Clearly
this type of growth canmot continue very much longer or there will be no
room left, insufficient food and few raw materials,

In view of what we know of exponentials, it is clear that the human
race must manage its affairs better in the future by finding ways of
limiting both the population and its usage of the world's resources to
levels that our planet cén sustain. Unless this is done, nature will
apply one of her own traditional methods of limitation — famine and
disease, probably preceded and accompanied by war.

Also we know that every delay in coming to grips with the problem

5.20

makes matters worse — in fact a delay of only about 30 years doubles the
size of the problem.

The past four or five generations have worked hard to provide food
and better material standards of living, and so have helped to increase
the population and accelerate the use of natural resources. The present
generation is continuing to do this, owing to sheer inertia and bewilder-
ment, but at least it has realised that a serious problem exists. It
will be the respomsibility of the next generation to start dealing with
these formidable difficulties,

CHAPTER 6

FORTRAN

Lecture by

J.M. BARRY

6
6.

6
6.

\OCO\.IO’\U‘I-PNU.JI\JI'—‘

6
6
6
6
6
6
6.
6
6
6
6
6
6

e e R e S S SR
= T R S

.17

CONTENTS

INTRODUCTION

OVERVIEW OF FORTRAN PROGRAMMING
PUNCHING OF CARDS

ARITHMETIC CONSTANTS

VARIABLES

INPUT AND OUTPUT

ARITHMETIC OPERATIONS AND EXPRESSIONS
SUPPLIED MATHEMATICAL FUNCTIONS
TRANSFER OF CONTROL

LOOPS

STOP AND END STATEMENTS

ARRAYS OF VARIABLES

SUBPROGRAMS

ERRORS IN PROGRAMMING

A RANDOM METHOD FOR DETERMINING =
PRACTICE EXAMPLES

ANSWERS AND TYPICAL CODING

APPENDIX 6A Solution to the Vector Summation Problem of

Section 6.12

APPENDIX 6B Format Control of I/0 Operations

Page

6

\O‘\-IO\UTU'I-L\I\J

A

.13
.15
.15
.18
.21
.22
.25
.27

.33

.35

6.1 INTRODUCTION

Each digital computer is capable of obeying a number of basic
instructions. These instructions vary for different computers but they
have many attributes in common:

(1) The ability to perform the four arithmetic operations +, -,

X,).

(ii) The ability to perform logical operations (is A > B?),

(ii1) The ability to perform "housekeeping' instructions (e.g.
moving numbers from core store to registers where arithmetic
and logical operations may be performed on them).

For a programmer to communicate with the computer at this most
fundamental level, it would be necessary for him to develop programs in
the basic machine language of the computer at his disposal. In the
early days of computing, it was necessary for scientists and mathe-
maticians to concern themselves with the intricacies of binary coding.

The long delays and inconvenience of this form of man-machine communi-
cation accelerated the growth of pProgramming languages that the problem
solver could use more readily. Many languages (FORTRAN, BASIC, COBROL,
ALGOL, PLI, APL, ACL, PASCAL, etc.) have been developed for scientific,
commercial and other applications. FORTRAN is chosen as the main vehicle
for problem solving at this Summer School because throughout the world

it is the most accepted scientific computing language. There are no
computers that obey programs written in FORTRAN directly, It is necessary
for programs in 'high level' languages such as FORTRAN to be translated
into an appropriate set of machine language instructions. This process

is known as compilation,

FORTRAN . - Machine
Program > Compiler - Program
Figure 6.1 - Compilation of a FORTRAN program

The FORTRAN source statements are translated to a set of machine
language instructions by a FORTRAN compiler (figure 6.1), The compiler
is itself a program (usually supplied by the machine manufacturer) that
first checks to ensure the FORTRAN statements obey the 'rules' of trhe
language (syntax analysis), and then supplies a set of machine instruc-

tions that will implement what the programmer has specified. When

e m e

6.2

the compilation process is completed, the machine instructions generated
may be executed. The finer details of this process and the way it is
implemented on the TEM360 will not be our concern at this Summer School
as we are interested primarily in using the computer as a tool for
mathematical problem solving.

6.2 OVERVIEW OF FORTRAN PROGRAMMING

Let us first consider the steps involved in solving a sample
problem, and the FORTRAN program that could be developed to carry them
out. When this is done we shall examine the various FORTRAN statements

in closer detail.

[_ Stirt AAJ

specify amount
borrowed

l

get monthly countex
Lo zero

Convert rate to
fractional rate/month

—1

calculate interest
after 1 month

l

Add interest to
amount borrowed

|

subtract loan
repayment

I

Increase monthly
counter by 1

10

Has
loan been
renaid

YES

convert number of
months to years

Print out number
of years

Finish

L

Figure 6.2 Flow chart for compound interest problem

6.3

Problem If $18000 is borrowed at a rate of 11% (wonthly reduci-
ble) and repayments of $300 each month are made, then how many years
will it take to repay the loan?

Before we can program a digital computer to solve a problem, it is
necessary for us to be able to detail logically the steps that are
needed to solve the problem, in much the same way as we would if we were
going to tackle the problem with a desk calculating machine, slide rule,
or pen and paper. Some people find it helpful to draw a flowchart
(figure 6.2) showing the steps involved, whereas others prefer to vigu~
alise all the steps in their mind.

From this flow chart the following program can be coded. At this
point we will not concern ourselves with the formal rules for coding but

just look at the end product (figure 6.3).

1 5 6 7 7273

80

PRPGRAM BY J.M. BARRYFiB DETERMINE THE NUMBER @F
YEARS NECESSARY TO{REFAY A LOAN.

THE PRINCIPAL BYRR@WED, INTEREST RATE AND M@NTHLY REPAYMENT
ARE T$ BE READ FRM A PUNCHED DATA CARD.

READ, PRINC,RATE, PAYMNT .

MNCNTR=0 o

FRATEM=RATE/ (100.%12,)

1| |ADPRIN=PRINC*FRATEM

PRINC=PRINC+ADPRIN

PRINC=PRINC~PAYMNT

MNCNTR=MNCNTR+1

IF(PRINC.GT.0.) 6@ T 1

YEARS=MNCNTR/12,

PRINT, YEARS

ST@P

END

QO O a O

The data card sufficient for this problem would be

18000. 11, 300.

Figure 6.3 - Sample program for compound interest problem

6.4

6.3 PUNCHING QF CARDS

To assist in the punching of cards, programmers usually use a
standard coding sheet (as shown in the following example) representing
the 80 columns available on a punched card. Each line of the sheet

represents a new card which may contain only one statement.

1 5 6 7 72 -8}
C J. SMITH STATEMENT EXAMPLE THIS
o THE ABOVE IS A COMMENT SECTION
X=A+B NOT
50 |¥=9.-C USED
P R INC = RATE * PRINC/100. + PRINC IN
SUM = A+B+CHDHE+FHGHH+ FORTRAN
1 GHPHHR ' PROGRAMS

Statements can be punched from colummns 7 to 72Z. To assist the pro-
grammer to recall aspects of a program, a comment card (denoted by a C
in column 1) may be placed anywhere within the punched deck., These are
ignored by the FORTRAN compiler. Normally we shall commence our pro-
grams with a comment card to assist with the identification of the
program.

Columns 1 to 5 inclusive can be used if desired to assign a state-
ment label in the form of a number in the range 1 to 99999 (there is no
need to choose labels in ascending order).

Blanks may be inserted within a statement to make it more readable,
and may be considered as being removed in the compilation process.

If a statement is too long to fit on one card, it is continued from
column 7 of a subsequent card provided that column 6 of this card con-
tains a continuation character (any character other than a blank or zero
will suffice as a continuation character).

The character set available within the FORTRAN system consists of

(i) 26 capital letters A,B,Cyuvy?

(ii) 10 numerals 0,1,2,...,9;

(11i) 10 special characters +,—,*(mu1tipiiéation),/(division)
ves'y(4),=,%; and

(iv) a blank (usually written ¥ if its presence is to be emphasised

for punching).

6.5

6.4 ARITHMETIC CONSTANTS

We will treat three different types of constants sufficient for
handling data (numbers) in most scientific problems:

(i) INTEGER (or fixed point) constants,

- a whole number without a decimal point whose absolute value
1s < 2% - 1=(2147483647).
Valid integer constants 0 -5 +357 7005192
Invalid integer constants 27. 5,132 9812735997
(11) REAL (or floating point) single precision constants
- up to seven decimal digits with a decimal point, with or
without an exponent. The absolute magnitude is approximately
1077% o 107°.
Valid real single precision constants
+0., 7.91 5.3E+2(=5.3 x 102)
5.3E2(5.3 x 10%) -.051E-03 (-.051 x 10™ %)
Invalid real single precision constants 1 3,471.2 1.E
(iii) REAL (or floating point) double precision constants
- similar to (ii) but up to 16 digits are possible with a D
exponent being necessary instead of E. Double precision
constants will not be necessary for the Summer School prob-
lems.

Distinctions are carefully drawn between the three types of con-
stants for electronic rather than mathematical reasons. The electronic
‘hardware' necessary for INTEGER arithmetic operations is less sophis-
ticated and consequently for most machines is faster than that used for
REAL arithmetic. By performing those operations that require no decimal
point in integer mode, comnsiderable time savings can be made.

6.5 VARIABLES

A variable is a symbolic name used to identify a data item that
will occupy a location {(one word) of core storage. The actual address
of this location is assigned by the compilation process. If we move a
number into a variable it will replace the previous contents of that

location.
TIME=0.

This places zero in the location reserved for TIME, When a transfer is

made from a location, the previous contents remain unaltered.

X=TIME.

6.6

This assigns the contents of the location reserved for TIME to that
reserved for X without altering the contents of the location associated
with TIME.

The '=' operation should be interpreted as the assignment of the
result of the right hand expression to the left hand location. Con-

sequently, an expression such as
A=A+1.

does not yield any algebraic result but rather is interpreted as in-
creasing the old value associated with A by 1. to give a new result also
called A. The old value of A is, of course, lost.

Variable names may have up to six characters (special characters

are not permitted) the first of which must be alphabetic such as
TIME , X3B , I5 , T .

Variables like constants take an INTEGER or REAL form. Unless the
programmer provides specifications to the contrary, all variables
commencing with I,J,K,L,M or N are INTEGER variables, whereas the re-
mainder are single precision REAL variables.

Variables may also be subscripted in FORTRAN. Such variables may
be used to represent vectors or matrices which you probably have en-

countered in your mathematics courses:

v(3) is the FORTRAN representation of the vector component
V3
A(3,4) is the FORTRAN representation of the matrix element
ajzy.
(Further consideration of SUBSCRIPTED variables will be delayed until

section 6.12.)
6.6 INPUT AND OUTPUT

One way of assigning values to variables is through the direct use

of an arithmetic expression:
¥=6.3

Should one wish to alter the data on which the program is to operate
without changing the program itself (a most frequent requirement), then
a READ statement is needed.

The READ statements initiate the reading of data cards (which are

physically separated from the program cards) and result in the transfer

of numbers punched on these cards to variables in the READ lists.

READ, PRINGC,RATE,PAYMNT

L.]

Y

list of variables to be read

Numbers are read from a punched card and stored in the three variable
locations PRINC, RATE and PAYMNT. (Any numbers remaining from an
earlier card are ignored.) The data can be supplied in what is called
free format. This means that no specific columns of the card are
required for the various data items. It is sufficient to leave at least
one blank column or have a comma between each number in order to define
it.

The output statement PRINT allows free format output and functions
in a similar manner. For example, the output statement

PRINT, 'N@ @F YEARS =', YEARS
would display on the printer, output of the form
' N@ @F YEARS = 0.2631400E+02

As you can see, free format input and output (I/0) has certain
advantages in that the FORTRAN rules for its use are easily understood.
There is not a great degree of control over the layout, however, and
this is particularly unfortunate when preparing printed output, par-
ticularly if one wishes to make it as pleasing to the eye as possible.
In addition, free format as described here is only available for the
particular FORTRAN compiler (WATFIV) used at the Summer Schocl. Appendix
6B contains examples of format-controlled I/0 as a guide for the more
advanced reader,
6.7 ARITHMETIC OPERATIONS AND EXPRESSIONS

Five arithmetic operations are available to FORTRAN users:

(i) addition + e.g. A+B
(ii) subtraction - e.g. A-B
(1ii) multiplication * e.g. A*B
(iv) division ! e.qg. A/B

(v) exponentiation % o.g. A*%3 (A%

Expressions may be enclosed within parentheses as in normal algebra:

(a+b) (c+d) (A+B) * (C+D)
(a+b)? (A4+B) *%2
a A/ (B%C)

be

6.8

Parentheses are necessary to prevent two operations from appearing next

to each other (should such a combination be possible)
X%-Y must be coded X*(-Y)

The sequence of operations in expressions is determined from the
following hierarchy and is consistent with normal mathematics:
(i) **
(ii) */ left to right precedence
(iii) +~ left to right precedence.

Conseqﬁently, the expression
X+ (Y/A)-(3.%U)+P* (S**4) /3,
could have been correctly abbreviated to
X+Y/A-3 , %U+P*S*%4 /3,

The integer variables or constants deserve special mention.
Pivision of one integer by another results in the truncation of any

fractional remainder.

I=9
K=1/2

would resuit in K taking the value 4. This property can often be
exploited to the programmer's advantage when the testing for even

integers;
K=1-1/2%2

would assign 1 to K if I is odd, and 0 if I is even.

Expressions should consist of variables or constants all in the
same mo&e (i.e. all REAL or all INTEGER). (This is required by standard
FORTRAN. Most compilers allow mixed mode as an extension. This is the
case with WATFIV. The user of mixed mode arithmetic must, however, be
aware of the way in which it is designed to function, or else be ensnared.
For simplicity it is best avoided.)

There 1s one exception to this rule in that the exponent of a REAL
variable or constant may be INTEGER. The following are permitted forms

of exponentiation:
VH&2 VEEA
(-V)**% 45 vk (-1)
Vi (-2) T#%3

6.9

The mode of a variable on the left hand side of an arithmetic

assignment need not be the Same as that of the expression on the right.
A=T+1

The compiler will arrange for the right hand side to be evaluated in INTEGER
mode and the result to be converted to the RFAL mode before it is stored
away. Because of truncation in INTEGER division, great care should be
exercised in using this type of arithmetic.

6.8 SUPPLIED MATHEMATICAL FUNCTIONS

As there are a number of special mathematical functions or opera-

tions that are common to many problems, the FORTRAN compller provides
these as part of the normal system. To calculate the exponential

function x=et, all we need do is code
X=EXP(T)

To use a supplied mathematical function, it is only necessary to
follow the function name by an argument enclosed in parentheses., The
result will be returned as though the function name itself designated a
variable in the program. The argument may be a variable, constant or

arithmetic expression
A=EXP (A-C)+SQRT (15,)

A list of frequently required functions follows:

Mathematical Function Function Name (Argument)
square root, SQRT (X)
exponential, e EXP(X)
natural logarithm, log x (or fn X) ALAG(X)
sine of an angle (in radians), sin x SIN(X)
cosine of an angle (in radians), cos x C@s ()
tangent of an angle (in radians), tan x TAN(X)
arctangent (result in radians), tan lx ATAN(X)
absolute value (real numbers), |x| ABS(X)

Functions other than those supplied through the compiler are often
necessary, so FORTRAN allows a programmer to name and define his. own
special functions (section 6.13).

In the Summer School; frequent use is made of random numbers.
Details on what constitutes a series of pseudo-random numbers (these are

the ones we actually produce on a computer) will he given in other

6.10

jectures, however, we should note that random number routines are far
from trivial. Considerable mathematical and computer literature has
been devoted to this subject. At this stage, however, it is dimportant
to show how one may generate them as part of a FORTRAN program, Because
the random number generator is not a required component of a standard
FORTRAN system, and because random number generators are frequently
supplied by individual users, they are not included in the above list of
functions. There are two random number functions available for the
Summer School. These are

RAND(X), and

RND (X)

The first function generates a sequence of random numbers starting
each time with the same number, so that the sequence generated can be
repeated at a later time. It is a little like having purchased a
printed book of random numbers (Yes! Such things are available.) and
commencing each time at the start. This can be of use when developing
and testing a new program, in which case a constant environment may be
of assistance. The second function produces a random sequence of random
numbers. You may find this fits in more nicely with your basic intuition.
The second generator is much faster than the first; comsequently, it
will enable you to handle many more neutrons during the computer time
allowed for the Summer School problem. Just how many neutrons are
sufficient will be open to discussion later; for the moment we quote
the maxim 'enough is enough'.

Both generators can be invoked in a similar manner

Y=RND(X)
This results in a random number being assigned to the variable Y. This
number lies in the range

0<y<1
Unlike all the other functions, the argument X serves no meaningful
purpose. It is not used by the random number generator and 1s only
there because FORTRAN (remember it is the Boss) says that all functions
must have at least one argument. Failure to code such a dummy argument
would cause the FORTRAN compiler to reject your program because it was
not properly attired.

It is important to observe that the random number generator is the
most frequently written program of all time. Take particular care that

your programs are not unintentional attempts to make random number

6.11

producers (see section 6.14).

6.9 TRANSFER OF CONTROL

Execution of a program will commence at the first executable
statement and proceed through subsequent instructions in order, unless
a transfer of control statement is encountered. The simplest means of

transfer of control is through an 'unconditional G T@' statement.

56 READ,X
PRINT,X
GH TP 56

This section of program would cause cards to be read and printed with no
escape mechanism until the supply of punched data cards was exhausted,
in which case an error condition would cause the program to fail.
Clearly such a statement alone would be of limited use.

There is an extension of this statement, known as the 'computed G@
T@', which gives a little more choice in the statement to which the

branch is to be made:
Go T¢ (71,56,1,9),1

If I=1 control passes to statement 71
If I=2 control passes to statement 56
If I=3 control passes to statement 1

If I=4 control passes to statement 9

For any other value of I, control would pass to the next sequential
statement in the program.

Note that if I is a random integer produced by

T=10%RND (X)+1
then a computed G¢ T

cp T (1,2,3,4,5,6,7,8,9,10),1

could be used to select 1 of 10 options with equal probability.
The most useful form of the transfer of control statement is the

"logical IF' as demonstrated in our first sample program:
IF(PRINC.GT.0.)GP T9 1

If PRINC is greater than zero, then control will pass to the statement
labelled 1. The logical IF statement can be considered to be of the
form

IF (logical expression) restricted executable statement

6.12

The logical expression can take one of two values only, .TRUE. or
.FALSE. In a logical IF, the statement appended will be executed only
if the logical expression returns a .TRUE. result. When it is .FALSE.
the appended statement is ignored and control will pass to the next

statement:

IF(A.LT.B)GO T® 56
PRINT, B
56 A=B*C

If A < B, then A will be recalculated as the product of B and C. For
A Z B, the value of B will be printed first.
Although the appended statement is frequently a 'GP T@' statement,
it may be any executable statement other than another 'logical IF' or a
'DP' statement (section 6.10).
IF(A.LT.0.)A=-A

This would be sufficient to replace A with its absolute value although
the coding would be somewhat slower than if using the alternative state-

ment
A=ABS (A)

Logical expressions are most frequently formed by two arithmetic ex-

pressions and a relational operator:

A.EQ.B a is equal to b : a=b

A.NE.B a is not equal to b a#®hb

A.GT.B a is greater than b a>hb

A.GE.B a is greater than or equal to b a=b

A.LT.B a is less than b a<b

A.LE.B a 1s less than or equal to b ashb
e.qg. IF (A+B.LE.CH+SQRT (X**2%Y#%2))A=1,

Frequently, we wish to carry out more than one logical test at a
time., This can be done by combining logical expressions with one of the
following logical operators:

.AND. ©both expressions must be .TRUE. to return a .TRUE.
result

PR. result is .TRUE. if either expression is .TRUE.

READ A,B,C
IF (A+B.GE.C.AND.A+C.CE. B.AND, B+C.GE.A)PRINT, ' TRIANGLE', A, B,C

6.13

ST@P
END

The above program will read three values for A,B and C respectively
from a punched data card (not shown here) and will test whether the
values A,B and C are capable of being the lengths of the sides of a
triangle. As before, if the combined logical expfession is .FALSE.,
then control will pass to the next statement. IF it is .TRUE., it will
first print out the message and specified data.

6.10 LOOPS

We frequently find it necessary to repeat a section of code a given
number of times. Suppose our problem is to find the sum of the first 20
integers, i.e. 1+2+.,,.+20, Ignoring any appeal tb mathematical analysis,

the following code would be sufficient:

.
.

ISUM=0
I=1
5 ISUM=ISUM+I
I=I+1
IF(I.LE.20)G® T 5

In this example, ISUM is chosen as a variable name to accumulate
the sum of the integers (integer variables start with I,J,K,L,M or N).
It is first necessary to initialise this to zero and the counter (I) to
1. Two statements are then necessary to increase the counter and test
it to determine whether the loop is complete, and to transfer control
back if it is not. Because scientific programming is often repetitive
in this way, FORTRAN supplies a 'DP' statement to allow operations such

as the above to be quickly coded as

ISUM=0
D@ 5 I=1,20
5 ISUM=ISUM+I

The D@ statement specifies the last statement in the series of state-
ments to be repeated (3), an INTEGER variable to act as the counter (I),
and two INTEGER constants or variables to act as the initial and final

values for which the loop is executed.

6.14

Dg 2 J=N,M

will cause all statements up to and including label 2 to be repeated
(M~N+1) times. It is necessary for N and M to have previously been
assigned values, either as the left hand side of an arithmetic assign-
ment, or through a READ command., FORTRAN requires that N 2 1; while
M > N. When a DP loop is completed, the D@ variable (J in the above
example) is regarded as being undefined.

It is at times necessary to nest one D@ loop inside another.
Suppose we have 100 punched data cards with one number on each card, and
that our aim is to find the average of each group of 10 and print out
that average. The following is a complete program capable of doing

this:

c PRAGRAM BY J. SMITH
C T$ READ 100 NUMBERS AND
C FIND AND PRINT THE AVERAGE @F EACH GR@UP ¢F 10
D$ 1 I=1,10
SUM=0,
DP 2 J=1,10
READ, X
2 SUM=SUM+X
AVG=SUM/ 10,
1 PRINT,'AVERAGE FPR GRGUP @F 10=',AVG
STPP
END

18.51)
4235
-6.,7 >

data cards

/

The loops function so that the inner counter will vary the most rapidly,

il.e.

I[l i11... 1222...2...1010

Jll 23.,..10123.,..10 ... 210

D 27 I=1,N

.
.

IF(X.GT.27.35)G0 Tg 95
27 CONTINUE

95 X=X+7,

6.11 STPP AND END STATEMENTS
= =7 oLAIEMENTS

(1) The END Statement provides an indication to the compiler
that all the FORTRAN Statements that brecede it form a com—
plete and separate program or subprogram in their own right.
(i) The STPP statement is translated by the FORTRAN compiler as
part of the machine Program to be executed, When the pProgram
is executed and the ST@P statement encountered, execution of
it will cease and the computer will switch to the next waiting
job,
6.12 ARRAYS OF VARTABLES
Many mathematicail operations require the use of vectors and matrices,
FORTRAN supplies a means of handling 1,2,3 or higher dimensional arrays.
For the simplest array (the 1-dimensional vector), the ith element of
the vector v (Vi) is represented in FORTRAN ag V(I). Elements of ap

array or vector are capable of being used in FORTRAN in the same way

that ordinary variablesg are employed;

V(1)=0, the ith element of V ig set to zero
A=V(I)+C(J)-D(3)
V(I—l)=V(3*I—7)

INTEGER and greater than zero, They may be constants, variables or
expressions. The FORTRAN compiler reserves one location (word) for non-

subscripted variables to be stored. As subscripted variables take one

6.16

location for each array element, it is necessary for the programmer to
specify to the compiler the maximum number of elements associated with
each array. This is done through a non-executable statement, the
IDIMENSI@N' statement that must precede the first use of the array it is

defining:

DIMENSIPN V (15}
pp 1 1=1,8
1 v{2*I-1)=0,

The DIMENSIPN statement would tell the compiler that V is a vector (1-
dimensional) array requiring 15 storage locations. The supplied state-
mente would set all the odd components of V to zero. The next example
demonstrates how a vector may be used to calculate the mean and standard
deviation of a set of 10 numbers. These numbers are read from 10 cards

(i.e. one number per card):

10
) Xy
< o 1=l
10
10
I X)?
gtandard deviation = i=1 3
C 7. SMITH CALCULATE MEAN AND STANDARD DEVIATI@N
C @¢F 10 NUMBERS
DIMENSIPN X(10)
pp 1 I=1,10
1 READ,X(I)
SuM=0.

pg 2 I=1,10
2 SUM=SUM+X(I)
AVG=SUM/10.
SUMSQ=0.
pp 3 1=1,10
3 SUMSQ=SUMSQ+ (X (I)-AVG)¥**2
SDEV=SQRT (SUMSQ/9.)
PRINT, 'MEAN AND STANDARD DEVIATION =', AVG,SDEV
STPP
END

6.17

Here we use the vector X to store ten numbers before finding the mean
and standard deviation. Before employing vectors in a program, make
sure they are really necessary. In a previous example (section 6.10),
the mean of a set of numbers was required., There was no need in that
case to retain the ten numbers because the sum accumulated when each
number was read from a punched card. When the standard deviation is
sought, the numbers must be retained at least up to the point where the
mean is determined.

The next example demonstrates a program that computes the vector

sum s of two vectors u and v:

s s u oty
For u = (3,5,2)
and v o= (4,2,7)
then s = (3+4, 5+2, 2+7)

= (7,7,9)

. .th ,
Mathematically we say that the i component of s is formed as

s, = u, + v, 1<4i<3
i i i

The program will read the three pairs of data from separate punched

cards as shown

u v
3 ‘. 1
5 2.
2. 7

into two vector arrays (U and V), compute the vector sum in $ and print

out each component of S on a separate line.

DIMENSI@N S(3),U(3),V(3)

C FIRST READ IN THE DATA
i Dg 1 I=1,3
; 1 READ,U(I),V(I)
: C NPW FPRM THE VECT@R SUM
| D 2 I=1,3

2 S(D=U(T)+V (L)

6.18

C WRITE @GUT HEADING AND RESULTS
PRINT, "VECT@R S'
D¢ 3 1I=1,3
3 PRINT,S(I)
STPP

L_ END

(In this example, it would have been possible to perform the vector

addition operation without the use of subscripted variables - how? See
appendix 6A for a solution. Such an operation, however, is frequently
a small part of a much larger program where it is necessary to store the
data in subscripted variables.)

When arrays of higher order than the l«dimensional vector treated
so far are needed, the DIMENSI@N statement informs the compiler of the
number of dimensions (i.e. the number of subscripts) and the total

storage for the array.
DIMENSI@N A(5,5)

This informs the compiler that A is a matrix (2-dimensional array)

requiring 25 locations for storage:

DIMENSION A(5,5),B(5,5),C(5,5)

Dp 1 I=1,5
D 1 J=1,5
1 C(I,J)=A(I,J)+B(L,J)

.

In this case, two matrices A and B are summed and the result is stored
in a new matrix C.
6.13 SUBPROGRAMS
We have met (section 6.8) the special mathematical functions
supplied through the FORTRAN compiler. The user is able to supply two
types of subprograms of his own when necessary:
FUNCTI®N subprogram,
SUBRPUTINE subprogram.
Need for subprograms arises
(i) when the same mathematical function or procedure is required

at many points in a program;

6.19

(ii) in larger programs, where it pays to write and tést sections
of the code independently; and

(iii) when more than one person is responsible for developing the
code.

The FUNCTI@N subprogram returns a single value as its result and is
usually used to perform mathematical operations similar to v/ , or
function evaluation. The user supplied function is best demonstrated
by an example. Suppose we wish to evaluate a cubic polynomial for

various values of x:
f(x) = 1+ 1.5x + 3.2x% + 6x° ,
which for speed of computation is best written as
f(x) =1+ x (1.5 + x (3.2 + 6x))

Then we might use the coding ...

=<
I

F(X)+6,

™
II

F(X-1.) o Main or calling program

.

STHP
END 7

FUNCTI®N F{A)

F = 1,+A%(1,5+A%(3,2+6,%A))
RETURN

END . J

~ FUNCTI@N subprogram

In the main program, the function is invoked by naming the function
and enclosing in parentheses a constant, variable, or expression for
which the cubic polynomial is to be evaluated. The FUNCTI@N subprogram
is defined through the use of the 'FUNCTI¢N' statement and an appro~
priate name 'F' (in this case) by which the function is to be known. An
argument list corresponding to that in the main program is also re-
quired. The argument names in the function are only dummy ones and need
not be the same as those in the main program (all the other variables

and labels are local to the function and are in no way associated with

6.20

labels or variables in the main program). When the above function is
invoked twice by the main program, the values X and X-1. respectively

are transferred into the location set aside for A. The function must return
one value through the assignment of an arithmetic expression to the

function name as in
F = 1.+A%(1,5+A%(3.246.%A))

The 'RETURN' is a transfer of control from the function back to the
main program from where control was originally passed. The END state-~
ment is once again a signal to the compiler that this is the end of a
logically independent set of FORTRAN statements.

The SUBRPUTINE subprogram is the more powerful version of a sub-
program and usually performs more involved operations than those for
which the FUNCTI®N is designed. Typical tasks for which subroutines are
used would include finding the roots of equations, multiplication or
inversion of matrices, and solving sets of linear equations. Unlike the
function subprogram, the subroutine is not restricted to returning one
result as part of an arithmetic expression. The subroutine and the main
program communicate through the argument list only. The following code
shows the use of a subroutine QUAD to determine real roots of a quad-
ratic equation ax? + bx + ¢ = 0. The coefficients of the equation to be
solved are supplied as arguments td the subroutine, whereas the sub-
routine is responsible for returning the two roots and is an indication

as to whether real roots were possible:

1 READ,C1,C2,C3
CALL QUAD(C1,C2,C3,X1,X2,IER)
IF (IER.EQ.0)PRINT, 'R@@HTS $F QUADRATIC ARE',X1,X2
IF(IER.NE.O)PRINT, 'N@ REAL RGPTS EXIST'
G@# TG 1
END _
SUBROUTINE QUAD(A,B,C,R1,R2,K)
DISC=B*B-4 ,%A%*C
IF(DISC.LT.0) G@ TP 5
DISC=SQRT(DISC)
R1=(-B+DISC)/{(2.*A)
R2=(-B-DISC)/(2.%A)
K=0

6.21

RETURN
5 K=1

RETURN

END

The subroutine is invoked, through a 'CALL' statement, by naming
the subroutine and supplying a list of variables throggh which valuesg
are to be transferred to and from the subroutine. The main program
passes the three coefficients of the quadratic while the subroutine will
return the roots in X1 and X? and an indication (K=1 or 0) to the sign
of the discriminant. Once again the code within the subroutine ig
independent of the calling program.

6.14 ERRORS 1IN PROGRAMMING

Syntactical errors we make in coding a Program, Such errors are easy to
detect and Correct. The computer is a totally obedient servant;

provided that we ask it to perform a task in the language it under-
stands, it will obey us without question. Therefore, the hardest errors
to identify are the ones we make in specifying the logic or steps involved
in solving our problem, Reversing to British justice, alil programs

should be considered guilty (of containiﬁg bugs) until Proven innocent
("debugged').

debugging his code.
garbage in implies garbage out

This adage is certainly true but the programmer and, in particular, the
scientific programmer may find ir difficult to recognise the output of

8 program for what it ig, It is advisable to test programs thoroughly
before placing any confidence in their output. This 1is often done by
comparing the computed solution with a known mathematical or physical A
solution. When agreement is satisfactory we may then proceed to use our

program for all the cages we are interested ip.

programmer are different to those of the more commercially oriented
Programmer. As most commercial tasks are well defined, errors in the
computer output are directly due to the Program or incorrect data on

which it operated. The sclentific problem solver is solving a mathematical

6.22

model of some real physical system. When this model was developed, many
assumptions (and prebably simplifications) were made. Just how valid
were these and are they the source of errors? Were the errors caused by
the type of numerical technique chosen to solve the model? Or were the
errors due to the coding of these techniques?

6.15 A RANDOM METHOD FOR DETERMINING T

If one had a circular dart board mounted on a square background, as
shown in figure 6.4, then it would be possible to determine experi-

mentally an approximation for m. When a dart is thrown randomly to land

Figure 6.4 Dart board
in the square it may land within the circle or outside it. The prob-
ability of it landing within a certain section is proportional to the
area of that section:
Relative proportion of darts landing in the circle

area of circle
area of square

Tr?
(2r)”

i)

4

. m = 4 x relative proportion of darts landing in the circle.

Consequently, by randomly throwing darts and measuring the relative
frequency of those falling within the circle, ™ can be determined

directly. Instead of throwing darts, a computer can be employed to do

Y

Figure 6.5 Quadrant simplification of dart board

6.23

this by direct simulation. The process can be simplified as shown in
figure 6.5 by taking a quadrant of a circle of unit radius.

By selecting two random numbers, using our random number generator, we
may let these two numbers (say x and y) represent the coordinates of the
point where the dart lands. This point may be within the circle or

outside it. If we measure the distance d of the point from the origin

d = ¢x2+y2

we can determine if it lies in the circle or not depending upon whether
d<1ord>1 (or, equivalently, whether d? < 1 or d? > 1).

A flow chart to describe the steps involved is shown in figure 6.6
for a sémple of 1000 darts. A FORTRAN program sufficient to produce an

approximation for 7 would be

N=1000
NDART=0
NCIRC=0

1 X=RND(X)
Y=RND (X)
D2=XAX+Y*Y
IF(D2.GT.1.)GP T@ 2
NCIRC=NCIRC+1

2 NDART=NDART+1
IF (NDART.LT.N)G@ T¢ 1
PTE=4 . *NCIRC/NDART
PRINT, 'APPROXIMATI@N ¢F PT = ',PIE
STPP
END

6.24

Start

1

Set n= the
number of darts to
be thrown

Set number of darts
so far thrown = 0

]

Set number of
darts in circle = 0

I |

{
x = random number
y = randoim number

calculate square distance
from origin a? = x2+y2

NO ———3——o

YES

increase number of darts
landing in circle by one

increase number of darts
thrown by one

number of darts thrown

determine T =
No. in circle

4x

n

| Stop I

Figure 6.6 Flow chart for 1 problem

6.25

6.16 PRACTICE EXAMPLES

Before you attempt to code the simulation problem described in

chapter 3, try these practice examples. The answers to the questions

are given in section 6.17, but don't be too hasty to seek these out

until you have had a go yourself.

Ql.

Q2.

Q3.

(a) In the list below, which items are variables or constants?

(b) What is the mode (integer or real) of each variable or con-
stant in the list?

(c) Are any invalid?

List (1) 1., (2) ABC, (3) 14, (4) 14, (5) -0,0001E-10, (6) INKSTAIN,
(7) FIVE, (8) 6IX, (9) e, (10) 0, (11) B@S, (12) A*B,
(13) 5,312.6, (14) BLOT

Write each of the following algebraic formulae as a FORTRAN state-—
ment to calculate y. Use any convenient real names for the vari-
ables, which will be assumed to have been assigned values by

previous steps of the program.

(1) y = 3 (bte)
2_
2) y = ——*ng‘:
{3 y-X = a-ny (7=3.141592)

What values would be stored in the variable on the left of the

following arithmetic statements, given that A=3?

(4) I=A
(5) I=A/2.
(6) U=A/2,

Write the necessary statements of portion of a program to calculate
the variables given by the following expressions. Use any con-
venient names for the variables. You may assume that variables on
the right have been assigned values by previous steps of the pro-
gram and that the values do not require special consideration in

calculating the expressions:

(0 s = x? + y2 + z2

Q4.

Q5.

Q6.

Q7.

Q8.

Q9.

6.26

(2) y =e"

% (" - e
{(3) u = tanh x = 1

5 (ex + e-x)
(4) v = tan X
(5) c = £n | |

1+a?

(6) y = (& + e—/‘;}_{)/3

Write a FORTRAN statement that will assign a random number to a

variable named y, such that 0 < y < 1,

Write a FORTRAN statement that will assign a random number to ¥y,
such that 0 < y < 10.

Write a FORTRAM statement that will assign a random number to y,
such that -5 < y < 5. '

Write a FORTRAN program to print out ten random numbers such that

each number satisfies the conditions of Q5.

Write a FORTRAN statement that uses the FORTRAN random number

generator and will produce a random integer from the set (0,1,

2,...,10).

Bill Smith travels to work 5 days each week by bus. Bill is an
extremely methodical person who arrives at the bus stop at pre-
cisely 8.00 a.m. The government bus service is also extremely
punctual and its vehicles call at Bill's stop at 8.01, 8.06 and
8.11 a.m. Each of these is capable of getting Bill to work on
time. His employer although somewhat flexible and tolerant will
dismiss him should he arrive at work late more often than once a
month (one month = four working weeks) averaged over the period of
employment. Can Bill reasonably expeet to retain his job in the
long term if the number of passengers each bus can pick up at his
stop varies randomly between 0 and 9, and if he could find any
random number of people up to 10 in front of him in the queue?
Ignore any appeal to probability theory and write a FORTRAN program
using the random number generator RND to simulate the bus stop

situation and help estimate Bill's employment security with his

6.27

present firm. Run the daily simulation for 1000 such mornings and
print out the number of days per month Bill is late. Before you
write any FORTRAN code, you might like to draw a flow chart to make sure
you clearly understand the steps involved.
Q10. Write a program that will
(1) Read the four coefficients of a cubic polynomial f(x)=a+
bx+cx®+dx® from a punched card.
(2) Read the estimate xo of a root of the equation f(x)=0 from a
second card,
(3) Improve the estimate of the root by the Newton-Raphson method

f(xn)
1-e. 1 *n ~ ?TTEE)

(4) The process can be considered to have converged if

Ixn+l - xnI

———1*——r———— < 0.001
X
n

(5) Print out the improved estimate of the root.

(6) Allow only five iterations. If convergence has not been
achieved, print a message warning of this.

(7) Repeat from (1).

Q1. (For advanced students only)
Read in a set of ten numbers punched one per card. Write a code

that will sort these numbers in descending order.

6.17 ANSWERS AND TYPICAL CODING

Ql. (1) real constant, (2) real variable, (3) integer variable, (4)
integer comstant, (5) real constant, (6) invalid variable name as
more than 6 characters, (7) real variable, (8) invalid variable
name as first character is not alphabetic, (9) invalid variable
name as e is a lower case letter, (10) integer constant, (11) real
variable, (12) invalid since an expression 1s not a variable, (13)

invalid as comma is not permitted, (14) real variable.

Q2. (1) Y = 0.5%(B+C)
(2) Y = SQRT(B*B-4.%A%C)/(2.%A)
(3) Y = (X+A)/4.141592
(4) I=3
(5) I=1
(6) U=1.5

Q3.

Q4.
Q5.
Q6.
Q7.

08.

(1)
(2)
(3)

(4)
(5)
(6)

6.28

S = SQRT (X*X+Y*Y+Z*Z)

Y=EXP (X)

Wl = EXP(X)

W2 = 1./Wl

U = (Wi-W2)/(Wl+W2)

V = TAN(X)

C = ~AL@G(ABS(L.+A%A*A))

Wl = A*X

Y = (EXP(W1)+EXP{-SQRT(W1)))*0.3333333

il]
I 1]

1

n-

Y = RND(X)

Y = RND(X)*10.

Y

il

5.-RND(X)*10.

D¢ 1 I=1,10
Y=RND(X)*10.
1 PRINT,Y

I=RND(X)#*11.

Q9.

I Start!

6.29

Initialise day counter

to zero

Initialise late counter

to zero

L YES

Increase day
counter by one

is
day counter
< 1000

YES

NO

Generate gueue
position

Initialise bus
counter to zero

Generate bus
capacity

is
bus capacity
2 queue
position

NO

Decrease queue

position by bus capacity

Increase bus
counter by one

" bus counter

YES

Increase late
counter by one

N

NO

h 4

Result = late
counter /50

NO

YES

Print result

& Bill employed

Print result
& Bill fired

L

Finish

1000

6.30

NDAY=0

NLATE=0

NDAY=NDAY+1

IF (NDAY.GT.1000)G¢ T¢ 1000
NQ=RND (X) *23+1

NBUS=0

NBSCAP=RND (X) *10.

IF (NBSCAP.GE.NQ)GP T9 1
NQ=NQ-NBSCAP

NBUS=NBUS+1

IF (NBUS.LT.3)G@ T¢ 2
NLATE=NLATE+1

Gh TP 1

DLATE=NLATE/50.

IF (DLATE.LT.1.)G§ T@ 3
PRINT, 'BILL FIRED',DLATE
GO T} 4

3 PRINT, 'BILL EMPLOYED',DLATE
4 ST@P

END

6.31

Q10.

[»]

J. SMITH
ROPT OF CUBIC EQUATIPN
READ CPEFFICLENTS FR¢M @NE PUNCHED CARD
9 READ,A,B,C,D
C READ IN ESTIMATE F@R R@@T FROM NEXT CARD
READ, XN
C . L@@P TP IMPROVE ESTIMATE
D 1 I=1,5
XNPL=XN- (A+XN* (B+XN* (C+D¥XN))) / (B+XN* (2, *C+XN*3 , D))
C N@W ASK IS PRACESS C@NVERGING
IF (ABS((XNP1-XN)/XN).LT..001)G¢ T¢ 2
1 XN=XNP1
C ROAT HAS NPT BEEN F@UND
PRINT, 'RA@T N@T FUND WITHIN 5 ITERATI@NS'
C TRY AN@THER SET ¢F CPEFFICIENTS
Go T¢ 9
C RGPT LOCATED WITHIN PRESCRIBED B@UNDS
2 PRINT,'RG@T @¢F CUBIC=',XNP1
c TRY ANPTHER SET @F COEFFICIENTS
GO TO 9
END

Sample data cards:

5.6 3.7 2, ~46.
1.2

6.32

Q11.

c J. SMITH
SORTING PROBLEM
C N@TE THIS IS THE SIMPLEST T¢ CSDE - BUT NPT THE FASTEST
DIMENSI@N X(10)
C SET UP L@@P TP READ 10 NUMBERS
D$ 1 I=1,10
1 READ,X(I)
pp 2 I=1,9
N=1+1
Dg 2 J=N,10
IF(X(J).LE.X(1))Gp TP 2
TEMP=X (J)
X(J)=X(I)
X (I)=TEMP
2 C@NTINUE

O O o 6

6.33

APPENDIX 64
SOLUTION TO THE VECTOR SUMMATION PROBLEM OF SECTION 6.12

VECT@R SUM PR@BLEM.

THIS TIME THE PRﬁBLEM IS S@LVED WITH@UT USING

SUBSCRIPTED VARIABLES IN @RDER T® DEM@NSTRATE THE CAUTI@N
THAT SH@ULD BE EMPL@YED BEF@RE INTRADUCING THEM UNNECESSARILY,

PRINT, 'VECT@R S'
D@ 1 I=1,3
READ,U,V
S=U+V

1 PRINT,S
ST@P
END

6.34

6.35

APPENDIX 6B
FORMAT CONTROL OF I1/0 OPERATIONS

Far greater control of your input and output operations may be
obtained by using FPRMAT-controlled READ and WRITE operations. Because
these take a considerable time to master, most students are advised to
stay with the simpler forms of I/0 control treated earlier in the Summer
School. This appendix is included to give a limited idea of what 1is
possible. The general form of the I/0 statement is

READ(n,m) 1list of variables
WRITE(n,m) list of variables,
where n is an integer representing the device type for which the input/
output operation is to occur. At the AAEC Research Establishment
n=l for the card reader
n=2 for the card punch
n=3 for the printer,
m is an integer constant and represents the statement number of a
FPRMAT statement. The F@RMAT statement is used to edit the transfer of
data. A few examples will demonstrate the ideas involved.
(1) READ(1,127)N,X
127 FORMAT(I5,F10.2)
This will read one punched card and obtain from it two numbers. The
first number must be of integer form and may occupy the first five
columns of the card, Numbers with less than fivé digits should be
punched with leading blanks so that the number concludes in column 5.
The second number may span columns six to fifteen and would normally
have a decimal point punched. (If you fail to punch the decimal point
the computer gives you one in the default position specified by the
F10.2 FPRMAT code, viz. two digits from the right hand side.)
{2) X=527.1392
I=96
WRITE(3,100)I,X
100 F@RMAT(I5,F12.5)
This will produce the output
96 527.13920

6.36

The following FPRMAT statements would have produced the results

indicated.

100 FPRMAT(I3,5X,F9.4) 96 $27.1392

100 F@RMAT (I1,5X,F5.1) % 527.1

100 F@RMAT(I5,5X,F6.2) 96 527.14

100 FPRMAT(I5,5X,E11.4) 96 0.5271E+03

105 FPRMAT(' I=',I3,' X=',F6.2) I= 96 X=527.14

CHAPTER 7

BASIC FOR MINIS AND MICROS

Lecture by

J.P. POLLARD

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

CONTENTS

INTRODUCTION
GETTING THROUGH

LET'S RUN

WHAT'S IN A NAME?
OPERATIONS TO REMEMBER
GO TO AND OTHER DEVTATTONS
BUILT-INS

LET'S PUT IT TOGETHER
i/ou

ROUTINE MATTERS

PRETTY PRINT

HAVE A BREAK

SAVE IT

ANY OLD JOBS

SIGNING OFF

WHAT COULD BE MORE BASIC?
TRY THIS FOR YOURSELF

APPENDIX 7A FOR THOSE WHO HAVE FINISHED THE SUMMER SCHOOL

PROJECT: MONTE CARLO SIMULATION

APPENDIX 7B A LIST OF BASIC STATEMENTS VIA AN EXAMPLE:

SOLUTION OF QUADRATIC EQUATIONS

7.5
7.6
7.6
7.7
7.8
7.9
7.10
7.10
7.11
7.11
7.11
7.11

7.13

7.15

7.1 INTRODUCTION

At the present time, the possible use of microcomputers in the high
school has aroused much interest. Some schools already have such a
machine; others are contemplating getting them. Well, you may ask,
what is a microcomputer? How does it differ from a large scientific
computer such as the IBM360/65 to be used at this Summer School? The
real answer to these questions will come when we see one for ourselves.
Just now, we will be content to note that the most important feature is
probably the price. A reasonable machine can be obtained for about
$1000 to $2000. Almost all microcomputers available accept the BASIC
language — some nothing else — hence our interest in that language at
this Summer School.

BASIC was originally developed for beginners at programming by
Dartmouth College, New Hampshire, USA in 1964. Since then, many dif-
ferent versions ('dialects' of BASIC) have arisen. If we were to res-
trict ourselves to the subset common to them all, we might find that the

only type of statement available would be
10 REM THIS IS IT

- a remark made to help us find things in a program when listed but
otherwise ignored by the machine.

Here, we will meet a useful subset of so-called BASIC+, that will
at least run on a PDP11/45 minicomputer connected to various terminals
at Lucas Heights and which will also run on some microcomputers.

Unlike FORTRAN, BASIC is an interactive language (usually) hence
the main output of data is likely to come from a terminal (monitor,
teletype or whatever) rather than punched cards. We may thus make up
our minds as we go. Depending on what happens, we may readily change
the program and data to meet contingencies not originally envisaged.
7.2 GETTING THROUGH

Naturally, the computer system will not want to speak to us unless
we are bonafide. We must therefore find a terminal and sign on in an
acceptable way. During the week of the Summer Scheol, we are given two
'passwords':

1. initials: S8K (for Summer School Kids), and

2, ID: AM290060
which will get us through to BASIC. 1In the following stinted dialogue
between us and a computer (not actually the PDP11/45) the underlined

7.2

items are machine responses and-‘ denotes the carriage RETURN or ENTER key.
Here we go...
(1) Push (not hit} space bar
(2) 1ID: AM290060\\ (this won't print in case someone else is
watching)
(3 $2)

(4) login:SSK).(upper or lower case letters here select the
mode for the run)

(5) % BASICP |

(6) ready (A MICROCOMPUTER WILL PROBABLY START HERE)

our 10 REM THIS IS WHERE BASIC GOES - AT LAST!
BASIC e

program |\ ...

7.3 LET'S RUN

Here is a simple program to prepare a table of 21 values of y = e”

for x = -10,-9,...,0,...,9,10. A (WATFIV) FORTRAN version is shown for

comparison.

BASIC FORTRAN
rline numbers determine normal program 'flow’ rstatement numbers not necessary every line
10 REM PROG. TO TAB. EXP(X) C PROG. TO TAB. EXP(X)
20 X=-10. X=-10.
30 FOR I=1 TO 21 DO 70 I=1,21
40 Y=EXP(X) Y=EXP (X}
50 PRINT X,Y PRINT,X,Y
60 X=X%X+1. A=%X+1.
70 NEXT I 70 CONTINUE
80 STOP SToP
90 END END
L normally initially 10 apart for later
insertions
We type in the prog. {in any order of line nos.) We punch the prog.
We type LIST to check statements. We list the cards to check them,
We type RUN to start prog. We submit to run as a batch job.

We note the close similarity to FORTRAN {or at %east its WATFIV
dialect) and the subtle differences (no comma after PRINT for example).
The FOR-NEXT loop is similar to the DO-CONTINUE (or whatever terminating
statement) loop. A counter (any variable in BASIC, not just I,J,...,N
type fixed point variables of FORTRAN) is incfemented, usually in steps
of 1, until the terminating value is reached. We may however directly
specify negative values. For example, we may modify our BASIC program
thus:

delete statement 20 by typing

20 and nothing else,
change statement 30 by entering
30 FOR X=-10 TO 10
delete statement 60 with
60
and change 70 to
70 NEXT X
The typed command LIST would then give

10 REM PROG. TO TAB. EXP(X)
30 FOR X=-10 TO 10

40 Y=EXP(X)
50 PRINT X,Y
70 NEXT X

80 STOP

90 END

With a slight modification to the program, we may start with the
highest value...
change statement 30 by typing

30 FOR X=10 TO -10 STEP-1

As for FORTRAN, the loop limits may actually be specified by variables
rather than constants. Some BASICs permit non-integer values (like STEP
0.5), and indeed our BASIC+ does this whereas others just don't; they
work with the integers equal to or just below the numbers.
Like FORTRAN, sensibly nested loops are permitted, e.g. -
100 FOR I=1 TO 10
110 FOR J=1 TO I

. (coding which does not change the loop variables - I
’ and J here)

7.4

200 NEXT J

210 NEXT I
Note - the biggest line number permitted is usually 32767.
7.4 WHAT'S IN A NAME?

Normally BASIC has only twe types of varilables:
(1) Numeric variables with names
A,B,C,...,Z2 and
AQL,A1,A2,...A9; BO,B1,B2,...B9; ...Z0,Z1,22,...,29
— the numeric variable I7 could contain one of the numbers;
e.qg.
0, 27, -2183, 1.63, 3.141592, 7.65E+19, 1.139261E-2
(in fact any positive or negative number between about 1.E-38
to 1,E38, or 0).
(2) String variables, with names
AS, BS, C$,...,25 and
A0$,...,29%
- the string variable AS could contain up to a line of text
characters, e.g. "JOHN", "YES", "NO(S) LEFT", "**MARY'S GO**"
Note -~ text is enclosed between double quote marks.
Assignment of variables is of the style
Al=12.5
C3=Al
Al1S="1%"
B$=ALS$
(and some older style BASICs want you to let them know that the state-
ments are assignments thus, '
LET Al=12.,5
LET C3=Al, etc.
but please forget you were ever told about this).
Most versions of BASIC permit indexed arrays, e.g. A(112), but we
will not be concerned with such things here.

7.5 OPERATIONS TO REMEMBER

The BASIC expression
Y= (1+X*X) / (1-XtN)
calculates
y=(l+x2)/(l—xn)
and differs only from the FORTRAN counterpart in the use of 4+ (or

~

for

some keyboards) for exponentiation (raising to a power). The example

7.5

illustrates all you need to remember,

7.6 GO TO AND QTHER DEVIATIONS

The regular flow of BASIC when running is from the smallest line
number to the next in order, no matter in which order the statements are
typed. We have seen a FOR-NEXT combination to establish a loop back and
forth, Here are other statements that cause deviations to the regular
flow:

(1) GOTO line number (alternatively GO TO line number)

e.g. GOTO 10

(Y —
= equals
> greater than
(2) 1IF &1 4 < > &2 THEN statement| less than
>= greater than or equal
<= less than or equal
\ <> _Pot equal

where &l and 82 are arbitrary expressions

and statement is almost any BASIC statement, e.g.

IF A<B-1 THEN Z=1
except that (for some BASICs) another IF cannot follow and only the line
number must be given for a GOTO. Thus

IF X1>0 THEN 200
will transfer control to line 200 if X1 is positive. (Some newer style
BASICs do not insist on the THEN as part of the IF - but we will.)

{(3) ON & GOTO Dy sMysfy, ... _

where & is an expression (e.g. I, B+l, etc.)

and if 1 < & <2 control is transferred to line number n

1’

2 < & <3 control is transferred to line number n,,
3 <& <4 control is transferred to line number ng ete.

bl

In the BASIC program that we will use, if & cannot find an appropriate
n, (e.g. if & = 0), then an error condition arises.
(4) 8TOP
- does just that,
(5) END
- similar to STOP but some BASICS can only tolerate one of
these and then normally only as the final statement. Being
FORTRAN users, we will be happy to finish a BASIC program with
END,

7.6

7.7 BUILT-INS)
Like FORTRAN, BASIC has a suite of buillt-in functions. These are
as follows: ‘

+X if X%=0

"X 1f zeq ©-9- ABS(-2.7)=2.7

(1} ABS(X)= {

{(2) 1INT(X)= integer, equal to, or just smaller than X; e.g.
INT(3.14)=3 but INT(-3.14)=-4

VXK if %20
error otherwise

(3) SQR(X)={

(4) EXP(X)= &

_Yin X if X0
(5) LOG(X)_'{error otherwise

(6) SIN(X)= sin x - note that x must be in radians (1 radian =
180/m degrees)

(7) COS(X)= cos x

(8) TAN(X)= tan x

(9) ATN(X)= tan !X (i.e. arctan X)
{(10) RND(X)= a pseudo-random number, bigger than 0 and smaller

than 1

(an argument is to be supplied but is ignored)

(11) RANDOMIZE with no argument
- makes sure that successive runs of the same program
give different random numbers for the first use of
RND(X) - otherwise a chess playing program would always
open 'pawn to queen 4'.

7.8 LET'S PUT IT TOGETHER

We now put together a simple BASIC program to calculate the highest
common factor (HCF) of two positive integers M and N using Euclid's
algorithm (method):

10 REM HCF PROG

20 M=85

30 N=204

40 GOTO 80

50 PRINT H

60 STOP

70 REM

80 REM START OF FUCLID ROUTINE

7.7

90 H=N
100 N=M-N*INT (M/N)
110 M=H
120 IF N<>0 THEN 80
130 GOTO 50
140 END

Follow the program flow yourself to see what is happening. Our

variables change thus:

initially 1st pass 2nd pass 3rd pass 4th pass

- 204 85 34 17 <+ answer
204 85 34 17 0 <+ finish-::)
85 204 85 34 17

Surely we don't have to keep changing 1ines 20 and 30 -1f we want to
calculate the HCF of other numbers? No!
7.9 I/0U
We have seen how to output a number on the terminal with, for
example,
PRINT U

Surely to input a number from a terminal we would use
INPUT U

- yes!

The ambitious user of BASIC might also want to input a string of
characters (perhaps the name of the person running the program). We
would simply use, for example,

INPUT A%
and later we would output with
PRINT A$
Our HCF program may be modified to input M and N thus:

20 INPUT M,N (and at the appropriate RUN stage we enter,
for example, 85,204)

30 and nothing else (to delete the line)
60 GOTOC 20 (to always return to input two more values
for M and N)

The input described above is for interactive use where we may
change our minds depending on the printed results achieved so far. (In

a sense we are part of a loop with the computer.)- However, say we only

7.8

want to enter occasionally varying data such as the constants |, a, b, ¢
of our Summer School project. We enter such (essentially fixed) data
with a statement consisting of a line number followed by the control
word DATA, e.g,.

1000 DATA 0.577,0.184,0.494,1,172
which may appear anywhere in the program (although being FORTRAN users
we would probably put it towards the end, I.e. give it a high line
number)., As with FORTRAN, the data are not entered into the computation
until a READ is issued, e.g.

READ U
which will read the next word of data from a DATA statement. If previous
READs have exhausted all items of one DATA statement, then further input
will come from the next DATA statement in the program (if one exists).
Thus we could equally well have used for our example

1000 REM MU

1010 DATA 0.577

1020 REM A,B,C

1030 DATA 0.184,0.494,1,172
which we could enter into the program with, for example, the statement

READ U,A,B,C
When we RUN a job, the READ pointer begins from the first word of the
first DATA statement and then every successive READ moves the pointer
down the DATA list. We cannot jump over unwanted data (except with
dunmmy READ statements); however, we can always restore the pointer to
the beginning with the statement

RESTORE
7.10 ROUTINE MATTERS

When a portion of BASIC code forms a routine to do a specific job
we would like to be able to jump to the routine and return to the line
that follows (cf. a FORTRAN subroutine). The need becomes more apparent
when different parts of the main coding require calls to the one routine,
for then the return iz to be made to different parts of the program. We
might as well modify our HCF program to include a subroutine for the
Euclid algorithm. We type

40 GOSUB 80
130 RETURN
Get the idea?

7.9

7.11 PRETTY PRINT

If we run our HCF program we find it is a ait terse, for it says

?
when we are to supply input. In BASIC (and WATFIV, FORTRAN) we can
easily arrange to print descriptive information (without the labour
entailed by string variables). We simply enclose the information
between double quotes (single quotes for WATFIV) as part (or all) of the
PRINT statement. Our HCF program could thus be further modified:

15 PRINT "ENTER VALUES FOR M AND N"

50 PRINT "THE HCF IS";H

60 GOTO 15
No, the typist did this correctly - a semicolon implies a short skip
after the preceding number or characters, whereas a comma implies a long
skip so that precise columns of printout are maintained. Try it for
yourself! You might even be bold enough to try

15 PRINT "ENTER VALUES FOR M AND N";

A feature for establishing printed output at specific print posi-
tions is the TAB(X) function. The printed columns are usually numbered
0,1,2,...,71 and TAB(X) for X=3,141592, for example, would set the
subsequent print to begin at column number 3 (the INT part of X). We
might then decide to place our result for the HCF of two numbers in the
middle of the line thus:

50 ©PRINT TAB(25);"THE HCF IS";H
With a little pondering you might also see how rough graphical output,
say for the function Y=EXP(X), may be obtained using

PRINT TABR(Y);'"*"

We are hardly likely to remember all the changes that have been
made to our HCF program. Let us do another

LIST

10 REM HCF PROG
15 PRINT "ENTER VALUES FOR M AND N":
20 INPUT M,N

40 GOSUB 80

50 PRINT TAB(25);"THE HCF IS";H

60 GOTO 15

70 REM

80 REM START OF EUCLID ROUTINE

90 H=N

7.10

100 N=M-N*INT(M/N)

110 M=H

120 IF N<>0 THEN 80
130 RETURN

140 END

7.12 HAVE A BREAK

Say that in our HCF program we had mistakenly typed line 100 as
100 N=M
and we had requested the job to run
RUN
We would gain the (wrong) impression that the machine was slow for we
would have no more response out of it. But no - we are running a
program that is caught up in a never ending loop. How can we (or

rather the program) escape? Simply this - we just depress the two keys

CTRL (actually we hold the first key down and then
depress the second).

Thank goodness! Imagine the computer bill if we had had no way to break
out of that loop!

A similar feature holds for interrupting a LIST:

CTRL S gives a temporary interruption to the LIST and

|CTRL| l Q 1 resumes the LIST.

We may, however, select to LIST only a portion of our program from the
outset, TFor example, if we only want to list the EUCLID ROUTINE of our
HCF program, we would use

LIST 80-130

7.13 SAVE IT
Having gone to a lot of effort to type in a program, we would

obviously like to save it for later use, For the minicomputer setup
used at this Summer School, the program would be saved on disk, whereas
for a microcomputer setup the program would be saved on an ordinary
audio-cassette. Here we go:

SAVE int.HCFJOB
where int are your 3 initials used throughout the School (not SSK)
and HCFJOB (or the like - a name having up to 8 characters) denotes
the job. Thus I might use

SAVE JPP,TESTPRGM

7.11

Should the job already have been saved you would need to say, for
example,

REPLACE ~ JPP.TESTPRGM

7.14 ANY OLD JOBS

Of course saving a job would not be of much use if we could not
reload it (usually at some other time}. The command is simply this, for
example,

OLD JPP.TESTPRGM
which we would pPresumably then want to
RUN
or we could combine the two operations into one

RUN JPP,TESTPRGM

7.15 SIGNING OFF
When we have finished a session (and perhaps SAVEd our job), w

will terminate with the following signing off process:

(1) BYE - end of connection to BASIC+
(2) ICTRL] [:] - end of connection to PDP11/45
(3) m E - end of connection to the computer system.

7.16 WHAT COULD BE MORE BASIG?

Besides other BASIC statements which will not concern us (for it is

here that we encounter most differences from microcomputers) we can
use the machine as a calculator. If we leave out a line number, then
the instruction is carried out immediately. As a simple example we
could calculate 3e? using the coding

PRINT 3#*EXP(2)
which would return the result immediately the carriage return was
depressed. Similarly, the line

X=3%EXP(2) :PRINT X
would achieve an equivalent result (except that, in addition, the answer
would be stored in X) where ':' separates different statements on the
one line. (\is an alternative statement separator for some versions of

BASIC.)

7.17 TRY THIS FOR YOURSELF

During the Summer School, you will be given the opportunity to
'have a go' for yourself. Three jobs are detailed here - everyone

should try the first one; a few might get through to the third one.

7.12

(1) Write a BASIC program to display pseudo-random numbers. Print 10
such numbers and stop. How could you get 2 different set of 10
numbers for different runs?

(2) Write a BASIC program to simulate the roll of a dice 1000 times.
Report the number of throws that achieve a 1. Use the RANDOMIZE
statement and run the job 3 times to get some feel for the dis-
persion of the results about the expected mean of 167.

Note that this is almost equivalent to the problem of estimating
the number of source neutrons of our Summer School project that are
absorbed on their first collision when many iron plates are pré—
sent. Why?

(3) 1If you have finished the Summer School project, write a BASIC
program for the game MRMIND described in Appendix 7A.

Note Appendix 7B gives a list of BASIC statements that may help you to
get started.

7.13

APPENDIX 7A
FOR THOSE WHO HAVE FINISHED THE SUMMER
SCHOOL PROJECT: WMONTE CARLO SIMULATION

7A.1 INTRODUCTION

The study of (1) neutrons moving through absorbing material; (2)
queuing problems of people at a supermarket exit; (3) preparation of
high school timetables; and (4) fun and games can be assisted by simu-
lation of the processes. The simulation consists of studying hosts of
different possibilities pseudo-randomly chosen on a computer. Since you
will undoubtedly find some games to play at a computer terminal, the
idea here is to give you some idea of what happens after you hit carriage-
return at the terminal.

A basic requirement of Monte Carlo simulation 1s to generate pseudo-

random numbers r;, rz, r3, ... from a given starting value to rg.
Since we can write down the outcome, the sequence is reproducible
(provided that we stay with the one computer) but, to all intents and
purposes, we can consider the set of numbers {ry, ri, rg,...,rn} to be
random and uniformly distributed throughout the interval (0,1). With
BASIC we obtain a random number in the following way:

RANDOMIZE - 1initial statement at beginning of the program

: to yield a 'random' starting number.

R=RND{0) - later on, then R is a random number (and,
since we began with RANDOMIZE, the BASIC
system returng to us its next random number
rather than the first of a reproducible
sequence) .

Then I=INT(10%R)

is a random integer (digit) 0,1,2,3,4,5,6,7,8 or 9 since INT takes the

integer part of 10 times R. Our next use of the RND function will then
return a different number, and so on. After, say, 1000 calculations of

I we might produce the results.

7.14

I No. of
times

103
104
98
103
93
100
98
92
101
108

(¥ BN« SO N - Y T "SR - R o e

JA.2 ON WITH THE JOB

Use these ideas to write a BASIC version of
MISTER MIND
(Whereas master mind uses assorted colours, mister mind uses integer
digits 0 to 9. The game is an adaptation of BAGLES taken from the DEC
manual, 101 BASIC COMPUTER GAMES, 1975, p.22.)

In brief, the computer is required to obtain 3 random integer
digits (same as 'I' earlier) imagined to be the leading, middle and
trailing digits of a '3 digit number' between 000 and 999. A player is
permitted to have 20 goes at attempting to guess the digits. After
every go, the program is to return a clue in the form of two numbers

D
M

the number of correctly positioned digits, and

the number of matches of the player's digits with the
machine's digits, including any already counted in D.
A simple program would input player's digits one at a time. A more
complicated program would input a three-digit number and internally
strip off the digits.
As an example, say the sought after number is 346 and the opponent's

number is 640; then we print

D=1 (i.e. 1 correct digit, the 4)
and M=2 (i.e. 2 matched digits, the 6 and the 4),
Or if the sought after number is 355 and the opponent's number is 503
then we have

D=1 (i.e. the last 5)
and M=4 (i.e. the first 5 matches the last two and the last 3

does the same).

In:
e

Lo

ek

% bha

UNSW Rusicd

Resd

ol

Read

200
30 or
40 &
50 0F

7.15

APPENDIX 7B

A LIST OF BASIC STATEMENTS VIA AN EXAMPLE:

SOLUTION OF QUADRATIC EQUATIONS

AM290060

it ssl

R

!

NI]

bt

Y
[T
rirt
eard n
rirt
or

Note - depending on the mode of reply
of the password SSK (upper or lower
case} so that mode will be maintained
for the run. However most BASICs work
with capitals only.

Ll

~FROZL08 AM

I of cusdratic eans
5ol of auadratic eans

R A R A Y
te 1

esamr | es "

40 rveasd asbro

70
80 n

@l i

SO0

@0 rem over Lo wser

100
110
120
130
140
156
160
170
180
200
Y10
F20
930
1000
1010
1920
1030
1040
1050
1040
1070

1080

1090
1100
1110
1120
1130
1140
2000
2010
2020
2030
3276

Read

it
il
it
P
Ferd el
Frint
it
6L
g ho
rem g
Frint
gostib

osrinl Yrleasso sureyg naane?
alh
Trow wour Lurn *iah

ahs " please enbter coeffa in akekedbhfato=0n
Tavive
EXTirie
900
L1360
rint eroblem Lhen solve
"aolon ofUiad Ao S Ykt o ")

1000

. n
1o e n

relurm

™em

it a=0 Lhen
EHEINEE S FiF

o bk

N
i
Tt
rem
data
data
date

7 end

o

(real orv comslex)
Postor

g euadratic" §

roots
eyt

evbracting
"Lhat s

far
werirrh

Ot L re

clughs(d) | k=2 o hdet et
(note - all this applies if d negative)

g Lo 1100y1130

L

e td

oAl

AL AN TRICE o BYS AR WL R)

rh

test data n then (asbvedeaa.

o
Ly~3y2
7yl

see chapter

getting through

7.2

old 7.4

list 7.3

rem 7.1

print 7.3,7.9,7.11
read 7.9

jwith print 7.11
for 7.3

gosub 7.10
next 7.3

: mult.stmts.per line 7.16

input 7.9 & string
variables($) 7.4

goto 7.6

if 7.6,stop 7.6
numeric variables 7.4
& operations 7.5
string assignment 7.4
functions 7.7

on goto 7.6

return 7.10

data 7.9

end 7.6

7.16

TLIF
JdppRd-Nov-7807 109 AM
soln of ausdratic saens
firat 2 sameles

sl 1 Hekscb—3 ket
A 8 2 1

soln of 7 okt b ded
wl Buduee , Z1LA286E) b/

Flease surpy Heamne? John
e o Luer Jdotin

Johr elesse enter coeffe in akoorbieotbe=0
agrirr LeGol

saln of L ododkat O doob Lo =0 dse e

Ml guds= O F/-d 1

Jdonn elesse enter coeffs in a¥Xeootb¥ectos0
gybhoonT 12v8s2

soln of 12 joeokdot 8 deok 2
ad B e G- T B R NS S

A% s s

John wlesgse enter coeffs in slcobolbiooo=0
agrhye: eyl
aoln of B oot 4 dook L o=0 0% ..

sl RwBee 28 H/-d W25

dJohr elease enter coeffs in afcocdblecoto=Q
getrronT Gy8el

solrnn of 4 %ok B doot Lo=0 dis. ..

sl B R L 3ZPTH -1 e BAALOT

Jdohn wlesse enter coeffs in alXokstbicte=0
gybyo=T
Reraefu

bavee

4

conmeet Lime 2133.00
Lser oru Line L.74
sus oy tLime 4.16
4

END-SESSTON

run 7.3 & 7.14

CTRL 2 break 7.12

BYE
CTRL: D
signing off
7.15

CTRL P

CHAPTER 8

COMPUTER GAMES - A SIMULATION STUDY

Lecture by

E. CLAYTON

CONTENTS

WHY

HOW

WORLD GAMES

CALCULATOR GAMES

ODDS AND ENDS

BOOKMANSHIP

Page
8.1
8.1
8.3
8.4
8.5

8.5

Just as eating against one's will is injurious to health, so study
without a liking for it spoils the memory and it retains nothing.

Leonardo da Vinei : Notebooks

8.1 WHY

The most obvious reason for playing computer games can be given in
one word -~ FUN. However, those of us who have probiems of conscience
about enjoying ourselves ('life wasn't meant to be easy') must find some
deeper reason., Calculators are now being accepted into our schools, and
soon the controversy that erupted over their introduction will arise
again as small computers are installed. There appears to be two schools
of thought. Firstly, there is the notion that these devices will be
used only as a crutch; something that allows us to do hard sums (divisions
for example). This usage may result in a generation of non-numerate
people; people who can do arithmetic, but to whom mathematics is a
mystery. The other opinion is that we can use calculators and computers
as Imagination stimulators. We can use them not only to do hard sums
but also to explore the exciting world of mathematics. If this was the
only reason we could give for playing compdter games, thelr use would be
fully justified. Of course, I favour the latter school of thought and
in this lecture I hope to show you why .

8.2 HOW

The how of computer games is a function of our imagination and
Ingenuity. Many games devised for computers are simulations of games
that we play elsewhere! Given a visual display unit (VDU), we can play
a game of billiards, lose a fortune playing a poker machine, win a game
of chess or even play a round of golf. Setting up a game can have many
phases depending on the degree of sophistication. The best way to
illustrate such a process is to go through a fairly well known game,
namely billiards.

Let us imagine that we are going to set up a game of billiards on
the VDU, First, we must decide what is strictly relevant to our game.
Obviously we can dispense with the table legs - our table will be
represented by a rectangle on the screen., What then is necessary? We
need some mechanism to simulate collisions. Here we are lucky because

classical mechanics gives us all the appropriate mathematics. As a

8.2

matter of fact, the equations governing our case are known as billiard
ball collisions. Possibly our ancestors were really trying to improve
their billiard play instead of solving the problems of the universe as
we have been led to believe.

Rather than go through the mathematics let us just say that our

collisions will be represented by a function F:
F(q)’ VI, V2) = f(es Vi VZ))

such that two billiard balls, travelling with velocities v; and vz at
some angle 6 to each other will cellide and then travel with velocities
v, and V, at some angle ¢ to each other,

Next, we need pockets in the table, That is very easily done. Six
cireles are drawn in the appropriate place on the rectangle. Once our
balls have collided and are heading off in whatever direction, all we
have to do is determine whether or not they will finish up in a pocket.
I should add that one advantage of our simulation is that if a ball goes
into a pocket, it stays there ~ something that may not always happen in
the real case. If we get one in a pocket, our program calculates our
gscore and displays it. Sounds very easy doesn't it?

Now we need to put cushions on our table. Fortunately this is once
again no problem. A ball coming in with velocity v at an angle 8 to

the cushion bounces off at an angle 6 and velocity v

v v

e

We are all set up to go! Now follows a period of feverish coding
as we translate this rather broad analysis into a series of statements
in a computer program, We will gloss over the frustrations that arise
during coding and go straight to the finished product - a shiny new
billiards program,

We have a shot and watch as the first collision occurs. The balls
collide exactly as our equations predicted, bounce off a cushion exactly
as we had predicted, then bounce off another cushion, and another and
another and continue on ... quite happily rolling aleng until we stop

the program, realising that something is wrong.

8.3

Some head scratching reveals the very obvious solution. There must
be friction on our hypothetical table otherwise the balls will continue
to roll along until infinity comes. Our game has failed in a very
important aspect in all simulation - the need to take account of all
relevant physical processes. Once we code friction into our model all
will be well. However, there is one further point: even if you were to
run this game on a desert island, a crowd of spectators will soon appear,
s0 make certain you provide supper and light refreshments for your kibitzers?*
8.3 WORLD GAMES
There are games in which you set up a closed world, give it logical
rules to work by and then see how it develops. I think the most famous
of these is John Conway's Life Game described in Scientific American
(October 1970). In this game, counters on a large chess board die or
reproduce according to some simple genetic rules, These were carefully
laid down so that
. there should be no initial pattern for which there is a
simple proof that the population can grow without limit;

. there should be initial patterns that apparently grow without
limit; and
there should be simple initial patterns that grow and change
for a considerable period of time before coming to an end in
three possible ways: fading away completely (from overcrowd-
ing or from becoming too sparse); settling into a stable
configuration that remains unchanged; or entering an oscil-
lating phase in which they repeat an endless cycle of two or
more pericds,

Each point or cell of the board has eight nelghbouring cells.
Conway's genetic laws are very simple:

Survivals Each counter with two or three neighbouring
counters survives for the next generation. A counter is an
occupled cell,

Deaths Each counter with four or more neighbours dies (is
removed) from overpopulation. Every counter with one neigh-

bour or none dies from isolation.

*Kibitzer: Meddlesome person; one who gives advice gratuitously;
one who watches a game of cards from behind the players; meddlesome

locoker on {The Concise Oxford Dictionary]

8.4

. Births Each empty cell adjacent to exactly three neigh-
bours is a birth cell., A counter is placed in it at the next
move.

All births and deaths occur simultaneously. Together they form a
single generation of the complete life history of the initial configu-
ration.

Although these rules may seem rather dry, this game gives amazing
and sometimes quite beautiful patterns. One I like is the Cheshire Cat,
which slowly disappears leaving only its grin and finally a paw print.

X ¥

!E***** b generations thereafter

¥ ¥ ¥ — —_——

* * * #* * %
* KK ¥ * ¥ * %

Cheshire Cat The Grin A Paw Print

8.4 CALCULATOR GAMES

Showing lack of imaginatibn, I hadn't really considered playing
games on an ordinary pocket calculator, Imagine'my surprise and pleasure
when I received Games with the Pocket Caleulator. This book contains 24
games that can be played on a small pocket calculator. These games
range from Blackjack (Pontoon) to NIM., My Favourite is Defect Detective
which rune something like this.

One player thinks up a single malfunction in a célculator, e.g. 2.5
is added to every result of a calculation. Other players take turns in
supplying a computation problem to the calculator, and from the result

try to guess what is wrong.

6+7 = 15.5

2+2 = 6.5
1W0+5 = 4.5
0.5+1 = 4

2 -2 = 2.5

This gives the clue 2.5 is being added onto every correct answer; 13 +
2.5, 44 2.5, 2+ 2.5, 1.5+ 2,5, 0+ 2,5,

Given the mean streak that exists in all of us, we can think of
some absolutely fiendish malfunctions to give our calculator. How about
reversing the order of digits in the answer. 3 x 8 = 42, even repeating

the first digit of the input. 3 + 15 = (33 + 15) = 48, or doing this

8.5

only if a certain number, say 3, appears (8 + 4 = 12; 8 + 3 = (8 + 33) =
41). Very nasty players might take the exponential of the answer 3 + 2 =
(exp(1.5)) = 4.481689!! Any malfunction you can think up will provide
headaches and, I hope, a lot of laughs for all concerned.

8.5 (DDS AND ENDS

It is impossible in a short lecture to even scratch the surface of

a tiny portion of the world of games and puzzles. The theory of many

games has now reached the stage of a 30 page dissertation on the theory

of noughts and crosses complete with such strategical concepts as 'semi-

threat or threat, double threat and combined threat'. I hope that your

imagination has been stirred and that you will go out and play games

forever.

8.6 BOOKMANSHIP

The Master Book of Mathematical Recreations. Fred Schuh [1968]. Dover
Publications, New York.

Games with the Pocket Calculator. Sivasallam Thiagarajam & Harold D.
Stolovitch {1976]. Dymax, Menlo Park, California.

What to Do After You Hit Return or P.C.C's First Book of Computer Games.
[1977]. Menlo Park, Califernia.

101 Basic Computer Games. [1973] Digital Equipment Corporation, Maynard,
Massachusetts,

The Best of Creative Computing. Vols, 1 and 2, Edited by David Ahl.
[1976 and 19771].

NOTES

HOTES

NOTES

NOTES

