AAEC/E639 ## AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT LUCAS HEIGHTS RESEARCH LABORATORIES # THE DERIVATION OF A SPECIFICATION FOR FISSION-PRODUCED MOLYBDENUM-99 FOR THE PREPARATION OF AAEC (AUTOCLAVED) MK II B 99Mo/99m Tc GENERATORS by R. E. BOYD M. J. DRUCE **JANUARY 1987** ISBN 0 642 59852 5 ## AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT LUCAS HEIGHTS RESEARCH LABORATORIES THE DERIVATION OF A SPECIFICATION FOR FISSION-PRODUCED MOLYBDENUM-99 FOR THE PREPARATION OF AAEC (AUTOCLAVED) MK IIB 99Mo/99mTc GENERATORS by R.E. BOYD M.J. DRUCE #### **ABSTRACT** Technetium-99m eluates are shown to contain significantly lower levels of radionuclidic impurities than the parent ⁹⁹Mo feed solution. It is well established that alumina absorption of ⁹⁹Mo followed by saline elution of ^{99m}Tc leads to a considerable overall decontamination effect. This decontamination factor (DF) is defined as the ratio of radionuclidic impurities in the ⁹⁹Mo feed solution to radionuclidic impurities in the eluted ^{99m}Tc. impurity measurements were made on samples of fission product ^{99m}Mo feed solutions and ^{99m}Tc eluates from nominal 20 GBq and 150 GBq AAEC (autoclaved) Mk IIB generators. Minimum DFs were obtained which were then used to derive radionuclidic purity criteria for ⁹⁹Mo to satisfy the requirements of the British Pharmacopoeia. | |
 | . | | |--|------|----------|--| #### CONTENTS | 1. INTROL | DUCTION | 1 | |----------------------------------|---|------------------| | 2. THE DE | TERMINATION OF DECONTAMINATION FACTORS | 1 | | 3. SUMMA | ARY OF RESULTS | 2 | | 4.1 Intro
4.2 Iodi
4.3 Rut | ATION OF THE MOLYBDENUM-99 SPECIFICATION oduction ine-131 henium-103 lurium-132/lodine-132, Antimony-127, Zirconium-95, Niobium-95, and Barium- | 2
2
2
3 | | 140 | | 3 | | | ecial Conditions Applying to Iodine-131 | 4 | | 4.6 Mol | ybdenum-99 Specification for the AAEC Autoclaved Generators. | 4 | | 5. DEMON | ISTRATION OF THE EFFECTIVENESS OF THE SPECIFICATION | 4 | | 6. CONCL | USIONS | 5 | | 7. REFER | ENCES | 5 | | Table 1 | Generator performance indices | 7 | | Table 2 | (1st week of operation) Radionuclidic impurities in ⁹⁹ Mo | • | | Table 3 | Minimum decontamination factors | 8
8 | | Table 4 | Impurities which failed specification | 8 | | Table 5 | Predictable radionuclidic impurities | 9 | | | in excess of those permitted by BP | 3 | | Appendix A | Determination of the ¹³¹ l content of fission product molybdenum-99 | 11 | | Appendix B | | 12 | | Appendix C | • | 37 | |
 | | | ···· | |------|--|--|------| #### 1. INTRODUCTION The AAEC manufactures sterile ⁹⁹Mo/^{99m}Tc generators using fission product ⁹⁹Mo from the irradiation of ²³⁵U. To be a successful generator producer in a competitive market, it is essential that the generators be demonstrably reliable and able to produce ^{99m}Tc which is consistently of a high quality. Of the many aspects of quality, probably the most important for the generator is radionuclidic purity. When ²³⁵U is irradiated to produce ⁹⁹Mo, a range of toxic radionuclides is also produced which must be removed by radiochemical processing. The standard for processing is very high, to ensure a suitably purified ⁹⁹Mo product. It is a costly process in terms of both resources and time; the latter is responsible for additional losses due to radioactive decay. Pharmacopoeic monographs specify the maximum levels of radionuclidic impurities allowed in a dose of ^{99m}Tc to be administered to a human patient. For example, the British Pharmacopoeia (BP) permits ^{99m}Tc to be contaminated at the time of injection with up to 0.1 per cent of the total activity in the ⁹⁹Mo. To ensure that this is complied with, the generator manufacturer must limit the alumina matrix loading to well below its maximum capacity for absorbing ⁹⁹Mo (maximum Mo burden < 20 per cent of the absorptive capacity of the matrix). Under these conditions, there is no movement of ⁹⁹Mo in the liquid phase away from the absorbed band because efficient re-absorption occurs. (Although the ⁹⁹Mo band may eventually be eluted from the matrix, this does not occur during the life-time of the generator.) In the case of other radionuclidic impurities the imposition of purity restrictions on the ⁹⁹Mo feed solution leads to enhanced quality assurance. The radionuclidic impurities in ⁹⁹Mo are responsible for the contamination of ^{99m}Tc subsequently separated from the ⁹⁹Mo. The extent to which the individual contaminants appear in the ^{99m}Tc varies with each radionuclide. Ignoring the mechanisms by which the contaminants are transferred, measurements of relative concentrations indicate that ^{99m}Tc eluates contain significantly fewer impurities than the parent ⁹⁹Mo feed solution. These differences define the decontamination factor (DF): DF = Percentage Radionuclidic Impurities in the ⁹⁹Mo Feed Solution Percentage Radionuclidic Impurities in the Eluted ^{99m}Tc This ratio can be measured for each likely radiocontaminant. From these values a specification can be derived which relates 99 Mo purity to the requirement of British Pharmacopoeia [BP 1980] for the eluates. For example, as ruthenium-103 must not exceed 0.005 per cent of the 99 mTc activity and its experimentally determined DF is 100, the BP requirements will always be satisfied if the 103 Ru in the 99 Mo has a maximum concentration of $0.005 \times 100 = 0.5$ per cent. The experimental determination of the DF for each radionuclidic impurity allows the overall eluate quality for product approval to be predicted. #### 2. THE DETERMINATION OF DECONTAMINATION FACTORS Decontamination factors for radionuclidic impurities which contaminate the eluates of AAEC (autoclaved) Mk IIB generators were measured on ten consecutive production batches of fission ⁹⁹Mo (Batch Nos. 306/4A to 307/4A inclusive). From each batch, two generators were produced to AAEC specifications [Brian, AAEC undated report]; odd numbered generators had a nominal activity of 20 GBq and even numbered generators a nominal activity of 150 GBq. The generators were produced on Thursdays and Fridays, and their activities calibrated for the following Monday. Each generator was eluted once daily (excluding Saturday and Sunday) for two weeks; the total time between generator manufacture and the final measurement was 17 days. For each elution, the ^{99m}Tc activity of the eluate was measured and the elution efficiency calculated. The overall performances of the generators during the first week of operation were also assessed using the performance indices method of Boyd and Hetherington [1980]. Eluates were submitted for γ-spectrometric analysis immediately after elution and again after radioactive decay for approximately 72 hours. The result from each measurement was normalised to the time of elution. The first group of measurements provided information on the short-lived impurities ¹³²I and ¹¹²Ag; the measurements on the second group (3 days' decay) were used to estimate the ⁹⁸Mo, ¹³¹I, ¹³²Te, ¹¹²Pd, ²³⁹Np, ¹⁰³Ru; ¹²⁷Sb, ⁹⁵Zr, ⁹⁵Nb and ¹⁴⁰Ba concentrations. Because of the very low level of impurities, the contribution by ^{99m}Tc to the γ-spectrum was reduced by shielding the samples with lead (4 mm thick initially, 2 mm thick for decayed samples). While the purity of the daily eluates of 99m Tc was being established, the radionuclidic composition of the 99 Mo feed solution was also being determined. Gamma spectrometric measurements were repeated daily (other than Saturday and Sunday) on the same sample of 99 Mo throughout the two-week period. The purpose of the time-series of re-measurements was to explore the possibility that the trace impurities become more readily detectable as the 99 Mo activity diminishes by decay. Often impurities not seen in the initial measurement were detected and quantified in subsequent measurements (e.g. 127 Sb, 95 Nb, 95 Zr and 140 Ba). However, 131 I could not be detected in the presence of 99 Mo because of a similarity in photopeak energies (131 I - 0.365 MeV; 99 Mo - 0.366 MeV). Because of this, iodine was chemically separated before being analysed by γ -spectrometry for 131 I, and 132 Te/ 132 I. Because of differences in the chemical form of the impurities and their half-lives in relation to that of ⁹⁹Mo, the concentration of radionuclide impurities in the eluted ^{99m}Tc varied with each elution. A table of half-lives is given in **appendix C**. To obtain DF values, the maximum experimental value for a selected generator was chosen as the denominator. The values of the numerator were taken, in the main, as the mean obtained from several measurements on the same sample, the exceptions being for ¹³¹I and ¹³²Te concentrations, where the maximum values were used. For radionuclidic impurities with half-lives greater than that of ^{99m}Tc, the maximum concentration was recalculated to correspond to eight hours' post elution to correlate experimental results with the British Pharmacopoeia requirement in order that all concentrations refer to the time of administration, not time of elution. In the case of ¹³²I, the maximum concentration was that which occurred at the instant of elution. The results for all generators were combined and a range of DF values was obtained for each impurity. A statement of the minimum acceptable specification for the ⁹⁹Mo feed solution was obtained by applying the minimum DF value. Given the relatively small number of ⁹⁹Mo batches used, the
conservative approach was adopted. As the final product is claimed to meet BP specification, this could best be achieved by using minimum DF values. #### 3. SUMMARY OF RESULTS Tables 1a and 1b compare the performance of the generators with the criteria established by Boyd and Hetherington [1980]. Results obtained from generators whose performance is poor are considered unreliable. Table 2 summarises the radionuclidic impurities in the molybdenum-99 solutions. To obtain these results, the impurities from each batch of molybdenum-99 solution were averaged. This table is used to determine the decontamination factors for ¹³²Te/¹³²I, ⁹⁵Zr, ⁹⁵Nb, ¹⁴⁰Ba, ¹³¹I, ¹⁰³Ru and ¹²⁷Sb. Table 3 lists the minimum decontamination factors. The results indicate that the value of the DF is influenced by the activity of the ⁹⁹Mo loaded on the generator. In deriving the specification for an acceptable quality of ⁹⁹Mo, the more conservative results were used. A full set of experimental results is given in appendix B. #### 4. DERIVATION OF THE MOLYBDENUM-99 SPECIFICATION #### 4.1 Introduction In the following calculations, the minimum decontamination factors were applied to the BP specification for technetium-99m eluate to obtain a specification for the molybdenum-99 solutions of the maximum permissible concentrations of radionuclidic impurities. #### 4.2 lodine-131 BP specification for ¹³¹I = <0.005 % Minimum value for DF = 0.28 Maximum conc. ¹³¹I in ⁹⁹Mo = 1.4×10^{-3} % N.B. A DF value of <1 implies that ¹³¹I in ^{99m}Tc is higher than ¹³¹I in ⁹⁹Mo - a conclusion which is patently illogical and in disagreement with the majority of the experimental results. Iodine-131 is adsorbed as a narrow band on the alumina and is only eluted from it as a concentrated pulse after 10 or 11 elution cycles. When the ¹³¹I eventually breaks through, its concentration (after correction to allow for eight hours' decay) exceeds the concentration of the ¹³¹I, in the original ⁹⁹Mo. The specification of ⁹⁹Mo purity must allow for this phenomenon; the calculation of the DF for 131 I must, therefore, be based upon the worst possible event during the elution history of the generator, hence the value of <1. #### 4.3 Ruthenium-103 BP specification for 103 Ru = < 0.005 % Minimum value for decontamination factor = 35.9 103 Ru in 99 Mo = 35.9 × 0.005 = 0.1795 % #### 4.4 Tellurium-132/lodine-132, Antimony-127, Zirconium-95, Niobium-95, and Barium-140 These impurities are frequently found in fission ⁹⁹Mo and, subsequently in the eluted ^{99m}Tc. The BP does not specify a maximum allowable concentration for each of these contaminants; instead it states that the total concentration of 'other γ -emitters' in ^{99m}Tc (fission) must not exceed 0.01 % of the activity attributable to ^{99m}Tc (at the time of administration), *i.e.* $$0.01 > [(\%^{132}\text{Te}/^{132}|)_{Tc} + (\%^{127}\text{Sb})_{Tc} + (\%^{95}\text{Zr})_{Tc} + (\%^{95}\text{Zr})_{Tc} + (\%^{95}\text{Nb})_{Tc} + (\%^{140}\text{Ba})_{Tc} + \text{others}]$$ (1) When this expression is related to the concentration of impurities in the ⁹⁹Mo feed solution *via* the respective minimum decontamination factors, it becomes $$0.01 > \frac{(\%^{132}\text{Te}/^{132}\text{I})_{Mo}}{0.82} + \frac{(\%^{127}\text{Sb})_{Mo}}{6280} + \frac{(\%^{95}\text{Zr})_{Mo}}{141} + \frac{(\%^{95}\text{Nb})_{Mo}}{94} + \frac{(\%^{140}\text{Ba})^{Mo}}{45} .$$ (2) A test for the suitability of the 99 Mo would ensue from the application of this expression to the results of γ -spectrometric analysis. In practice, this is difficult for, in the data, some of the radionuclidic impurities are masked by the other radionuclides and cannot be detected until the sample is three to four days old. Hence, if the determination of suitability is to be completed before commencing generator production, it is necessary to resort to an alternative test which accepts much less comprehensive input data. Since the differences in the ranges, means and standard deviations of the respective concentrations of ¹³²Te, ⁹⁵Zr, ⁹⁵Nb and ¹⁴⁰Ba as listed in **table 2** are quite small, an accurate measurement of one impurity might be taken as an approximate determination for each impurity. Such an assumption does not introduce the possibility of gross error because, with the exception of ¹³²Te/¹³²I, the radionuclidic impurities included in this group each exhibit a large decontamination factor. If the ¹³²Te/¹³²I concentration is accurately known and the same results is then assigned also to ⁹⁵Zr, ⁹⁵Nb and ¹⁴⁰Ba, **equation 2** can be rewritten as $$0.01 = (\%^{132}\text{Te}/^{132}\text{I})_{Mo} \left(\frac{1}{0.82} + \frac{1}{141} + \frac{1}{94} + \frac{1}{45}\right) + \frac{(\%^{127}\text{Sb})_{Mo}}{6280}$$ $$0.01 = 1.259(\%^{132}\text{Tc}/^{132}\text{I})_{Mo} + \frac{(\%^{127}\text{Sb})_{Mo}}{6280}$$ This expression can be solved for $(\%^{132}\text{Te}/^{132}\text{I})_{Mo}$ only if the contribution due to ^{127}Sb can be ignored (because of the very large value of the DF for ^{127}Sb) or be assigned an arbitrary value. Since it is preferable to be conservative when developing a specification, a value is assigned to $(\%^{127}\text{Sb})_{Mo}$ equal to the highest value recorded in the experimental measurements (0.177 %) plus three standard deviations on the mean value (3 × 0.058 = 0.174%). For the limiting case, equation 2 then reduces to $$0.01 = 1.259 \, (\%^{132} Te/^{132} I)_{Mo} + 0.00006$$ or $$%(^{132}\text{Te}/^{132}\text{I})_{Mo} = 0.008\%$$ (It follows that this value applies also to 95Nb, 95Zr and 140Ba.) #### 4.5 Special Conditions Applying to Iodine-131 The formation of ¹³¹I from ²³⁵U by fission follows a complex decay pathway: The branching of the fission product decay series implies that ¹³¹I continues to form several days after the end of neutron activation. Hence an early measurement of (% ¹³¹I)_{Mo} could be an underestimate. In practice, the extent of the error was demonstrated to be up to a factor of two. The need for a conservative approach in the derivation of the specification requires that a safety factor of two be applied to compensate for the risk that further ¹³¹I is formed from the delayed decay of thirty-hour ^{131m}Te. Hence the derived maximum level of (% ¹³¹I)_{Mo} of 1.4×10^{-3} must be modified to 0.7×10^{-3} . #### 4.6 Molybdenum-99 Specification for the AAEC Autoclaved Generators. In the light of the foregoing comments, it is proposed that the minimum acceptable quality for the ⁹⁹Mo feed solution guaranteed to produce ^{99m}Tc eluates which will satisfy the BP requirements of radionuclidic purity, up to 8 hours after elution, is as follows: $$^{131}\text{I} < 7 \times 10^{-4}$$ % , $^{103}\text{Ru} < 0.18$ % , $^{132}\text{Te}/^{132}\text{I},\,^{95}\text{Zr},\,^{95}\text{Nb}$ and $^{140}\text{Ba},\,\text{each} < 0.008$ % , $^{127}\text{Sb} < 0.35$ % . #### 5. DEMONSTRATION OF THE EFFECTIVENESS OF THE SPECIFICATION By applying the specification derived in **section 4.6** for the molybdenum-99 feed solutions, the batches fail according to **table 4**. Of the twenty generators made from these batches, only three (Nos. 9, 19 and 20) produced eluates which did not comply with the BP requirements. Although this suggests that the specification may be too harsh, it should be remembered that the results were obtained by eluting the generators every 24-hours. If elutions were performed more frequently, then all the impurity levels would be elevated. For example, if a generator is eluted two hours after the previous elution (which may occur if insufficient technetium-99m is obtained at the first elution, it is necessary to assume that the ^{99m}Tc and ¹³²I have grown, respectively, to only approximately 25 and 60 per cent of the 24-hour activity, and that the concentration of all the other impurities is volume-dependent and hence unaffected by the short inter-elution period. Under these conditions, 13 of the 20 AAEC generators do not meet BP specifications, a fact which lowers their competitiveness. If no restriction is to be placed on the frequency of elution of generators, the conservative approach of using minimum DFs to determine the specification for the molybdenum-99 is mandatory to ensure that BP requirements for the eluates are met in all instances. #### 6. CONCLUSIONS A specification for the radionuclidic purity of fission product ⁹⁹Mo has been derived on the basis of experimentally determined decontamination factors. If the batch of ⁹⁹Mo passes this test, the ^{99m}Tc produced from it will also always pass the BP requirement. If the ⁹⁹Mo does not satisfy the specification, the ^{99m}Tc will sometimes fail the test. Since, in practice, quality control criteria must always be conservative, this approach appears to be justified. #### 7. REFERENCES British Pharmacopoeia [1980] - Monograph on Sodium Pertechnetate (99mTc) Injection (fission), p.896. Brian, H.H. [undated] - AAEC master manufacturing specifications for Mk IIB autoclaved generators. AAEC unpublished report. Boyd R.E., Hetherington E.L.R. [1980] - Technetium-99m generators - operational assessment by performance indices. *Int. J. Appl. Radiat. Isot.*, 31:250-253. ### TABLE 1 GENERATOR PERFORMANCE INDICES (1ST WEEK OF OPERATION) TABLE 1a NOMINAL 20 GBq ⁹⁹Mo GENERATORS | Generator
Number | Generator
Activity
(GBq) | ⁹⁹ Mo
Batch No | Index
No. 1 | Index
No. 2 | |---------------------|--------------------------------|------------------------------|----------------|----------------| | 1 | 22.4 | 306/4A | Pass | 4th Class | | 3 | 22.3 | 306/4B | Pass | 4th Class | | 5 | 23.0 | 306/4C | Pass | 4th Class | | 7 | 26.0 | 307/1A | Fail | 4th Class | | 9 | 28.0 | 307/1B | Pass | 4th Class | | 11 | 27.9 | 307/2A | Pass | 4th Class | | -13 | 22.4 | -307/2B | Pass | - 4th-Glass | | 15 | 23.0 | 307/3A | Fail | 4th Class | | 17 | 22.0 | 307/3B | Pass | 3rd Class | | 19 | 23.0 | 307/4A | Pass | 2nd Class | TABLE 16
NOMINAL 20 GBq ⁹⁹Mo GENERATORS | Generator
Number | Generator
Activity
(GBq) | ⁹⁹ Mo
Batch No | Index
No. 1 | Index
No. 2 | |---------------------|--------------------------------|------------------------------|----------------|----------------| | 2 | 150 | 306/4A | Pass | 1st Class | | 4 | 162 | 306/4B | Pass | 1st Class | | 6 | 163 | 306/4C | Pass | 1st Class | | 8 | 177 | 307/1A | Pass | 1st Class | | 10 | 172 | 307/1B | Pass | 1st Class | | 12 | 163.9 | 307/2A | Pass | 1st Class | | 14 | 164.5 | 307/2B | Pass | 1st Class | | 16 | 138.0 | 307/3A | Pass | 2nd Class | | 18 | 164.0 | 307/3B | Pass | 1st Class | | 20 | 160.0 | 307/4A | Pass | 1st Class | Index No. 1; Pass = Values of elution efficiency within ±5 % of a normalised mean value. Fall = Values of elution efficiency outside ± 5 % of a normalised mean value. Index No. 2; 1st class = <2 per cent loss of efficiency/elution; 2nd Class = <3 % loss of efficiency/elution; 3rd Class = <4 % loss efficiency/elution; 4th Class = >4 % loss of efficiency/elution. TABLE 2 RADIONUCLIDIC IMPURITIES IN ⁹⁹Mo | Radioisotope | Range | Mean × 10 ⁻³ | s.d. | |-------------------------------------|---|-------------------------|------------------------| | 132 _{Te/} 132 _I | $2.8 \times 10^{-3} - 1.7 \times 10^{-2}$ | 7.3 × 10 ⁻³ | 4.7 × 10 ⁻³ | | 95Zr | $n.d 2.1 \times 10^{-2}$ | 5.7×10^{-3} | 7.3×10^{-3} | | ⁹⁵ Nb | $n.d 9.4 \times 10^{-3}$ | 3.0×10^{-3} | 3.6×10^{-3} | | ¹⁴⁰ Ba | n.d 2.1 × 10 ^{–2} | 5.9×10^{-3} | 2.4×10^{-3} | | 131 | $5.0 \times 10^{-4} - 1.3 \times 10^{-2}$ | 2.3×10^{-3} | 3.6×10^{-3} | | ¹⁰³ Ru | 0.023 - 0.227 | 0.076 × 10 ³ | 0.061 | | ¹²⁷ Sb | n.d 0.177 | 0.106×10^3 | 0.058 | n.d. not detected. s.d. standard deviation. TABLE 3 MINIMUM DECONTAMINATION FACTORS | Radionculide | Generator
Activity | Minimum Decontamination Factor | |-------------------------------------|-----------------------|--------------------------------| | <u> </u> | rouving | 1 80001 | | ¹³¹ | 150 | 0.28 | | | 20 | 0.38 | | ¹⁰³ Ru | 150 | 72 | | | 20 | 35.9 | | ¹³² Te/ ¹³² I | 150 | 3.2 | | | 20 | 0.82 | | ¹²⁷ Sb | 150 | 6 280 | | | 20 | 13 600 | | ⁹⁵ Zr | 150 | 732 | | | 20 | 141 | | ⁹⁵ Nb | 150 | 732 | | | 20 | 94 | | ¹⁴⁰ Ba | 150 | 45 | | | 20 | n.d. | TABLE 4 IMPURITIES WHICH FAILED SPECIFICATION | ⁹⁹ Mo Batch | Radionuclide(s) | |------------------------|--| | 306-4A | 131 | | 306-4B | 131 ₁ | | 306-4C | 131 | | 307-1A | 131 | | 307-1B | 131 _I , 103 _{Ru,} 132 _I , 140 _{Ba} | | 307-2A | 131, 132, 140Ba | | 307-2B | 132 | | 307-3A | 131 _, 132 | | 307-3B | ¹³¹ i. ⁹⁵ Zr | | 307-4A | 131, 95Zr | TABLE 5 PREDICTABLE RADIONUCLIDIC IMPURITIES IN EXCESS OF THOSE PERMITTED BY BP | ienerator
lumber | ⁹⁹ Mo
Batch No. | Radionuclide(s | |---------------------|-------------------------------|-------------------------------------| | 1 | 306/4A | Nil | | 2 | | Nil | | 3 | | ¹³¹ I; ¹⁰³ Ru | | 4 | 306/4B | 131 | | 5 | • | 131 _[| | 6 | 306/4C | ¹³¹ [| | 7 | | NII | | 8 | 307/1 A | Nil | | 9 | | 131 _; 132 | | 9 | 307/1B | | | 10 | | 131 ; 132 | | 11 | 007/04 | ¹³² | | 12 | 307/2 A | Nil | | 13 | | 132 | | 14 | 307/2B | 132 ₁ | | 15 | | ¹³² I; ¹⁰³ Ru | | | 307/3 A | 131 | | 16
17 | | Nil | | | 307/3B | | | 18 | | Nil | | 19 | 307/4A | ¹³¹ | | 20 | 3V//4A | 131 _] | #### **APPENDIX A** ### DETERMINATION OF THE ¹³¹I CONTENT OF FISSION PRODUCT MOLYBDENUM-99 #### A1. GENERAL INTRODUCTION The identification of ¹³¹I in ⁹⁹Mo by gamma spectrometry is difficult because the most abundant photopeak of ¹³¹I (0.365 MeV) is masked by the 0.366 MeV peak of ⁹⁹Mo. This problem can be overcome by utilising the second most abundant peak of ¹³¹I (0.637 MeV), where interference from the ⁹⁹Mo peak is negligible. However, this could lead to a marked loss in sensitivity because emissions at 0.637 MeV have an abundance of 9.3 per cent whereas those at 0.365 MeV have an abundance of 79 per cent. Since the determination of trace quantities of ¹³¹I in the presence of a vast excess of ⁹⁹Mo gamma spectrometry will not produce the desired result, ¹³¹I must be separated before quantification. A number of methods have been developed to determine fission product radioiodine activities; these normally involve the use of carrier iodide in which oxidation-reduction reactions in acid solution produce I₂ which is then extracted into a solvent such as chloroform or carbon tetrachloride. Low and erratic yields occur owing to the incomplete interchange between the radioiodine and the carrier. To be applied as a routine test for the determination of ¹³¹I given a highly radioactive solution of ⁹⁹Mo, the method must not only be sensitive, but also fast enough to minimise the dose to the analyst. At Lucas Heights, the latter requirements have precluded the use of multi-stage solvent extraction techniques. Instead, a method was developed which is not only accurate and reproducible but is both simple to operate and safe. It involves the reaction of iodide and iodate in acid medium to form elemental iodine: $$5I^{-} + IO_{3}^{-} + 6H^{+} = 3I_{2} + 3H_{2}O.$$ To ensure complete reaction in the 99 Mo solution, iodide and iodate carriers are added in the appropriate molar ratio. The iodide is separated by sublimation from the acid solution and then absorbed in an alkali trap. The process occurs rapidly, with a high iodine recovery and incurs a very low contamination with 99 Mo. Simple γ -spectrometry of the distillate provides information on the 131 I, 132 I (hence 132 Te) and 133 I concentrations in the 99 Mo feed solution. #### **A2. METHOD OF DETERMINATION** #### A2.1 Apparatus A 25 mL micro-still is connected *via* an air condenser to a caustic soda bubbler (2 mL); the still is heated by a small electric mantle and a continuous sparge of air is supplied to the still by an aquarium aerator. #### A2.2 Reagents 6 \underline{N} NaOH; KI solution (10 mg (l) mL⁻¹); KIO₃ solution (10 mg (IO₃) mL⁻¹); ammonium molybdate solution (100 μ g Mo mL⁻¹); 1 \underline{M} HNO₃. #### A2.3 Procedure Add two drops of NaOH to the still and then mix 1 mL of sample (50-100 MBq ⁹⁹Mo), 1 mL KI solution, 0.3 mL KIO₃ solution and 1 mL ammonium molybdate solution with air bubbles. Add 1.5 mL NaOH to the trap. Quickly add to the still sufficient HNO₃ (1-2 mL) to promote the reaction leading to the formation of elemental iodine; seal the still and commence heating gently. Iodine needles collect in the air condenser as a band approximately 1 cm long. As the heating progresses, the band gradually moves along the condenser until it enters the NaOH and is dissolved. After approximately 20 minutes, the sublimation of iodine is complete; this can be assessed visually by the disappearance of colour from the liquor in the still and the fact that no more needle-crystals are formed in the still head and condenser. The NaOH trap is then emptied and washed repeatedly with water; the alkaline-iodide solution plus the washings are placed in a thin-walled counting vial, the volume adjusted to 10 mL and the vial sealed. The vial is placed in a lead pot (2 mm wall thickness) and the sample examined by gamma spectrometry to estimate the ¹³¹I, ¹³²I and ¹³³I content. Separation and measurement of the radioiodines is done in duplicate. ### APPENDIX B EXPERIMENTAL RESULTS | Tables B1 to B 10 | Radionuclidic Purity of Production Particles | 13 - 17 | |-------------------|--|---------| | Tables B11 to B21 | Generator Elution Efficiencies | 18 - 23 | | Tables B22 to B40 | Radionuclidic Purity of Generator Eluate. | 23 - 33 | | Table B41 | Barium and Strontium Contaminants | 34 | | Tables B42, B43 | Decontamination Factors for 20 GBq Generators | 34 - 35 | | Tables B44, B45 | Decontamination Factors for 150 GBq Generators | 35 - 36 | ## TABLE B1 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 307-4A | | Percentage of the Total Activity | | | | | | | | | | |---------------------------------|----------------------------------|------------------|------------------------|-------------------|------------------------|--------|---|---------------|---------------|--| | Measurement
Date | Reference
Date | ⁹⁹ Mo | ¹³¹ | ¹⁰³ Ru | ¹³² Te | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | | 30.09.83 | 30.09.83 | 100 | - | n.d. | - | n.d. | n.d. | n.d. | n.d. | | | 04.10.83 | 30.09.83 | 99.917 | - | 0.0288 | - | 0.0413 | 3.34×10 ⁻³ 140Ba | n.d. | n.d. | | | 05.10.83 | 30,09.83 | 100 | - | n.d. | - | n.d. | n.d. | n.d. | n.d. | | | 06.10.83 | 30.09.83 | 100 | - | n.d. | - | n.d. | n.d. | n.d. | n.d. | | | 07.10.83 | 30.09.83 | 99.976 | _ | 0.0236 | - | n.d. | n.d. | n.d. | n.d. | | | 10.10.83 | 30,09.83 | 99.964 | _ | 0.0360 | - | n.d. | n.d. | n.d. | n.d. | | | 11.10.83 | 30.09.83 | 99.962 | - | 0.0383 | _ | n.d. | n.d. | n.d. | n.d. | | | 12.10.83 | 30,09.83 | 99.957 | 1.1 × 10 ⁻³ | 0.0435 | 2.8×10^{-3} | n.d. | n,d. | n.d. | n.d. | | | -13:10:83··· | 30:09:83 | 99.967 | | 0.0325_ | | n.d | n.d. | n.d. | n.d. | | | 14.10.83 | 30.09.83 | 99.972 | - | 0.0278 | - | n.d. | n.d. | n.d. | n.d. | | | 17.10.83 | 30.09.83 | 99.967 | - | 0.0326 | - | n.d. | n.d. | n.d. | n.d. | | | Impurity Conc
Calculation of | | | 1.1 × 10 ⁻³ | 0.0329 | 2.8 × 10 ⁻³ | 0.0413 | ¹⁴⁰ Ba/ ¹⁴⁰ La
3.4 × 10 ³ | - | - | | n.d. not detected TABLE B2 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 306-4B | | | | | Percen | tage of the To | tal Activit | у | | | |---------------------|-------------------|------------------|------------------------|-------------------|-------------------------|-------------|---------------------------------|---------------|---------------| |
Measurement
Date | Reference
Date | ⁹⁹ Mo | 131 | ¹⁰³ Ru | 132 _{Te} | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 30,09.83 | 30.09.83 | 99.912 | - | 0.088 | - | n.d. | n.d. | n.d. | n.d. | | 04.10.83 | 30.09.83 | 99.732 | - | 0.0882 | - | 0.168 | $3.0 \times 10^{-3} ^{140}$ Ba | n.d. | n.d. | | 05,10.83 | 30.09.83 | 99.724 | - | 0.101 | - | 0.152 | 3.0 × 10 ^{-3 140} Ba | n.d. | n.d. | | 06,10.83 | 30.09.83 | 99.884 | - | 0.0885 | - | n.d. | $3.5 \times 10^3 ^{140}$ Ba | n.d. | n.d. | | 07.10.83 | 30.09.83 | 99.737 | _ | 0.0846 | - | 0.130 | 4.0×10^{-3} 140 Ba | n.d. | n. d . | | 10.10.83 | 30.09.83 | 99.621 | _ | 0.0840 | - | 0.158 | 3.7 × 10 ^{-3 140} Ba | n.d. | n.d. | | 11.10.83 | 30.09.83 | 99.797 | - | 0.0918 | - | 0.111 | n.d. | n.d. | n.d. | | 12.10.83 | 30.09.83 | 99.738 | - | 0.0970 | - | 0.165 | n.d. | n.d. | n.d. | | 13.10.83 | 30.09.83 | 99.742 | _ | 0.0895 | _ | 0.168 | n.d. | n.d. | n.d. | | 14,10,83 | 30.09.83 | 99.912 | 1.5×10^{-3} | 0.0879 | 6.6×10^{-3} | n.d. | n.d. | n.d. | n.d. | | 17.10.83 | 30,09.83 | 99.914 | _ | 0.0862 | - | n.d. | n.d. | n.d. | n.d. | | | | | | | | | n.d. | n,d. | n.d. | | Impurity Conce | | | 1.5 × 10 ⁻³ | 0.0897 | 6.6 × 10- ⁻³ | 0.150 | 3.6 × 10 ³ 140Ba | - | - | TABLE B3 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 306-4C | | | | | Percen | tage of the To | otal Activi | ty | | | |------------------------------------|-------------------|------------------|------------------------|-------------------|------------------------|------------------|----------------------------------|---------------|---------------| | Measurement
Date | Reference
Date | ⁹⁹ Mo | 131 | ¹⁰³ Ru | ¹³² Te | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 30.09.83 | 30.09.83 | 99.804 | - | 0.0413 | - | 0.154 | n.d. | n.d. | n.d. | | 04.10.83 | 30.09.83 | 99.786 | - | 0.0583 | - | 0.151 | $5.0 \times 10^{-3.140}$ Ba | n.d. | n.d. | | 05.10.83 | 30.09.83 | 99.778 | - | 0.0515 | _ | 0.166 | 4.5×10^{-3} 140Ba | n.d. | n.d. | | 06.10.83 | 30.09.83 | 99.794 | • | 0.0528 | - | 0.150 | 3.5×10^{-3} 140 Ba | n.d. | n.d. | | 07.10.83 | 30.09.83 | 99.729 | - | 0.0574 | - | 0.216 | n.d. | n.d. | n.d. | | 10.10.83 | 30.09.83 | 99.765 | - | 0.0556 | - | 0.180 | n.d. | n.d. | n.d. | | 11.10.83 | 30.09.83 | 99.747 | _ | 0.0571 | - | 0.196 | n.d. | n.d. | n.d. | | 12.10.83 | 30.09.83 | 99.777 | - | 0.0520 | - | 0.165 | 6.4×10^{-3} 140Ba | n.d. | n.d. | | 13.10.83 | 30.09.83 | 99.757 | | 0.0583- | | 0.180- | –4.8-×-10 ^{–3 140} Ba− | n.d | —_ก.d | | 14.10.83 | 30.09.83 | 99.755 | - | 0.0535 | - | 0.192 | n.d. | n.d. | n.d. | | 17.10.83 | 30.09.83 | 99.746 | 1.6×10^{-3} | 0.0606 | 4.8×10^{-3} | 0.194 | n.d. | n.d. | n.d. | | Impurity Conce
Calculation of E | | | 1.6 × 10 ⁻³ | 0.0544 | 4.8 × 10 ⁻³ | 0.177 | 4.8 × 10 ⁻³ 140 Ba | - | | TABLE B4 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 307-1A | | | | Pe | rcentage c | f the Total Ac | tivity | | | | |------------------------------------|-------------------|------------------|------------------------|-------------------|------------------------|----------------|------------------------|---------------|---------------| | Measurement
Date | Reference
Date | ⁹⁹ Mo | 131 | ¹⁰³ Ru | ¹³² Te | ¹³² | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 07.10.83 | 07.10.83 | 99.970 | - | 0.0300 | - | n.d. | n.d. | n.d. | n.d. | | 10.10.83 | 07.10.83 | 100 | - | n.d. | _ | n.d. | n.d. | n.d. | n.d. | | 11.10.83 | 07.10.83 | 99.981 | •. | 0.0195 | - | n.d. | n.d, | n.d. | n.d. | | 12.10.83 | 07.10.83 | 99.981 | - | 0.0189 | _ | n.d. | n.d. | n.d. | n.d. | | 13.10.83 | 07.10.83 | 99.967 | - | 0.0327 | - | n.d. | n.d. | n.d. | n.đ. | | 14.10.83 | 07.10.83 | 100 | - | n.d. | - | n.d. | n.d. | n.d. | n.đ. | | 17.10.83 | 07.10.83 | 99.985 | - | 0.0148 | - | n.d. | n.d. | n.d. | n.đ. | | 18.10.83 | 07.10.83 | 99.986 | 9.6 × 10 ⁻⁴ | 0.0143 | 1.2×10^{-3} | n.d. | n.d. | n.d. | n.đ. | | 19.10.83 | 07.10.83 | 99.982 | - | 0.0178 | - | n.d. | n.d. | n.d. | n.d. | | 20.10.83 | 07.10.83 | 99.968 | - | 0.0320 | - | n.d. | n.d. | n.d. | n.d. | | 21.10.83 | 07.10.83 | 99.975 | - | 0.0253 | - | n.d. | n.d. | n.d. | n.d, | | 24.10.83 | 07.10.83 | 99.975 | - | 0.0251 | - | n.đ. | n.d. | n.d. | n.d. | | Impurity Conce
Calculation of E | | | 9.6 × 10 ⁻⁴ | 0.023 | 1.2 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | TABLE B5 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 307-1B | | | | | Per | rcentage of th | e Total Ac | livity | | | |---------------------|-------------------|------------------|------------------------|-------------------|----------------------|----------------|-------------------------|------------------------|---------------------------------| | Measurement
Date | Reference
Date | 99 _{Mo} | ¹³¹ | ¹⁰³ Ru | ¹³² Te | ¹³² | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 07.10.83 | 07.10.83 | 99.740 | - | 0.150 | 0.0376 | 0.0900 | n.d. | n.d. | 2.0 × 10 ⁻² 140 Ba | | 10.10.83 | 07.10.83 | 99.510 | - | 0.225 | 0.0272 | 0.175 | n.d. | n.d. | 2.1×10^{-2} 140Ba | | 11.10.83 | 07.10.83 | 99.565 | - | 0.248 | 0.0365 | 0.144 | 0.006 ⁹⁵ Zr | n.d. | n.d. | | 12.10.83 | 07.10.83 | 99.565 | - | 0.248 | 0.0365 | 0.144 | 0.006 ⁹⁵ Zr | n.d. | n.d. | | 13.10.83 | 07.10.83 | 99.570 | - | 0.216 | 0.0508 | 0.163 | n.d. | n.d. | n.d. | | 14.10.83 | 07.10.83 | 99.582 | _ | 0.248 | 0.0480 | 0.122 | n.d. | n.d. | n.d. | | 17.10.83 | 07.10.83 | 99.566 | - | 0.230 | 0.0315 | 9.143 | 0.010 ⁹⁵ Zr | n.d. | 1.9 × 10 ^{-2 140} Ba | | 18.10.83 | 07.10:83 | 99:618 | - | 0.232 | n,d | 0.139 | 0:010 ^{_95} Zr | n.d. | n:d | | 19,10.83 | 07.10.83 | 99.583 | 9.4×10^{-4} | 0.220 | 3.0×10^{-2} | 0.149 | 0.006 ⁹⁵ Zr | n.d. | n.d. | | 20.10.83 | 07.10.83 | 99.555 | - | 0.242 | n.d. | 0.166 | 0.010 ⁹⁵ Zr | n.d. | 2.3 × 10 ⁻² 140Ba | | 21.10.83 | 07.10.83 | 99.553 | - | 0.236 | 0.0658 | 0.136 | 0.009 ⁹⁵ Zr | n.d. | n.d. | | 24.10.83 | 07.10.83 | 99.626 | - | 0.223 | n.d. | 0.118 | 0.008 ⁹⁵ Zr | 0.003 ⁹⁵ Nb | $2.3 \times 10^{-2} ^{140}$ Ba | | Impurity Conce | | | 9.4 × 10 ⁻⁴ | 0.227 | 0.0404 | 0.141 | 0.008 ⁹⁵ Zr | 0.003 ⁹⁵ Nb | 0.021 ¹⁴⁰ Ba | TABLE B6 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. $^{99}\mathrm{Mo}$ BATCH NO. 307-2A | | | | | Perc | centage of the | Total Act | ivity | | | |---------------------|-------------------|------------------|------------------------|-------------------|------------------------|-----------|-------------------------|-------------------------|--------------------------| | Measurement
Date | Reference
Date | ⁹⁹ Mo | 131 | ¹⁰³ Ru | ¹³² Te | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 13.10.83 | 13.10.83 | 99.835 | 7.5 × 10 ⁻⁴ | 0.0508 | 7.4 × 10 ⁻³ | 0.114 | n.d. | n.d. | n.d. | | 17.10.83 | 13.10.83 | 99.895 | - | 0.0175 | n.d. | 0.087 | n.d. | n.d. | n.đ. | | 18.10.83 | 13.10.83 | 99.743 | - | 0.0824 | 0.0179 | 0.156 | n.d. | n.d. | n.d. | | 19.10.83 | 13.10.83 | 99.817 | 1.4×10^{-3} | 0.0862 | 1.5×10^{-2} | 0.097 | n.d. | n.d. | 0.0134 ¹⁴⁰ Ba | | 20.10.83 | 13.10.83 | 99.768 | - | 0.0844 | 0.0183 | 0.116 | n.d. | n.d. | 0.0134 ¹⁴⁰ Ba | | 21.10.83 | 13.10.83 | 99.771 | - | 0.0836 | n.d. | 0.132 | n.d. | n.d. | 0.0128 ¹⁴⁰ Ba | | 24.10.83 | 13.10.83 | 99.710 | - | 0.0778 | n.d. | 0.199 | n.d. | n.d. | n.d. | | 25.10.83 | 13.10.83 | 99.913 | - | 0.0835 | n.d. | n,d. | n.d. | 0.0031 ⁹⁵ Nb | 0.0142 ¹⁴⁰ Ba | | 26.10.83 | 13.10.83 | 99.772 | - | 0.0719 | n.đ. | 0.142 | n.d. | n.d. | n.d. | | 27.10.83 | 13.10.83 | 99.711 | - | 0.0826 | n.d. | 0.199 | 0.0068 ⁹⁵ Zr | n.d. | n.đ. | | 28.10.83 | 13.10.83 | 99.699 | - | 0.0810 | n.d. | 0.216 | 0.0042 ⁹⁵ Zr | n.d. | n.d. | | 31.10.83 | 13.10,83 | 99.733 | - | 0.0809 | n.d. | 0.176 | 0.0070 ⁹⁵ Zr | 0.0032 ⁹⁵ Nb | n.d. | | Impurity Conce | | | 1.4 × 10 ⁻³ | 0.0736 | 0.0171 | 0.149 | 0.0060 ⁹⁵ Zr | 0.0032 ⁹⁵ Nb | 0.0135 ¹⁴⁰ Ba | TABLE B7 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 307-2B | | · · · | | | Percentag | ge of the Total | Activity | | | | |------------------------------------|-------------------|------------------|------------------------|-------------------|------------------------|----------|------------------------|---------------|--------------------------| | Measurement
Date | Reference
Date | ⁹⁹ Mo | 131 | ¹⁰³ Ru | ¹³² Te | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 14.10.83 | 14.10.83 | 99.859 | 5 × 10 ⁻⁴ | 0.0160 | 6 × 10 ⁻³ | 0.125 | n.d. | n.d. | n.d. | | 17.10.83 | 14.10.83 | 99.794 | - | 0.0612 | - | 0.145 | n.d. | n.d. | n.d. | | 18.10.83 | 14,10.83 | 99.835 | - | 0.0433 | _ | 0.122 | n.d. | n.d. | n.ď. | | 19.10.83 | 14.10.83 | 99.806 | 4.8×10^{-4} | 0.0372 | 1.0×10^{-2} | 0.157 | n.d. | n.d. | n.d. | | 20.10.83 | 14.10.83 | 99.826 | - | 0.0420 | - | 0.126 | n.d. | n.d. | 0.0062 ¹⁴⁰ Ba | | 21.10.83 | 14.10.83 | 99.793 | - | 0.0679 | - | 0.134 | ก.d. | n.d. | 0.0048 ¹⁴⁰ Ba | | 24.10.83 | 14.10.83 | 99.758 | - | 0.0499 | - | 0.192 | n.d. | n.d. | n.d. | | 25.10.83 | 14.10.83 | 99.724 | - | 0.0493 | - | 0.227 | n.d. | n.d. | n.d. | | 26,10.83 | 14.10.83 | 99.770 | - | 0.0637 | - | 0.167 | n.d. | n.d. | n.d. | | 27,10.83 | 14.10.83 | 99.767 | - | 0.0565 | - | 0.176 | n.d. | n.d. | n.d. | | 28.10.83 | 14.10.83 | 99.949 | - | 0.0513 | - | n.d. | n.d. | n.d. | n.d. | | 31.10.83 | 14.10.83 | 99.951 | - | 0.0489 | - | n.d. | n.d. | n.d. | n.d. | | Impurity Conce
Calculation of I | | | 5.0 × 10 ⁻⁴ | 0.0489 | 1.0 × 10 ⁻² | 0.157 | n.d. | n.d. | 0.0055 ¹⁴⁰ Ba | TABLE B8 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 307-3A | | | | | Percer | ntage of the To | otal Activity | / | | | |------------------------------------|-----------|------------------|------------------------|-------------------|------------------------|---------------
-------------------------|-------------------------|---------------| | Measurement | Reference | ⁹⁹ Mo | 131 | ¹⁰³ Ru | ¹³² Te | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | Date | Date | | | | | | ^ | <u>_</u> | | | 21.10.83 | 21.10.83 | 99.847 | 7.8×10^{-4} | 0.0671 | 7.5×10^{-3} | 0.0858 | n.d. | n.d. | n.d. | | 24.10.83 | 21.10.83 | 99.864 | - | 0.0905 | - | 0.0451 | n.d. | n.d. | n.d. | | 25.10.83 | 21.10.83 | 99.740 | 1.1×10^{-3} | 0.0993 | 1.2×10^{-2} | 0.127 | n.d. | n.d. | n.d. | | 26.10.83 | 21.10.83 | 99.892 | - | 0.108 | - | n.d. | n.đ. | n.d. | n.d. | | 27.10.83 | 21.10.83 | 99.902 | - | 0.0977 | - | n.d. | n.d. | n.d. | n.d. | | 28.10.83 | 21,10.83 | 99.814 | - | 0.0992 | - | 0.0826 | 0.0041 ⁹⁵ Zr | n.d. | n.d. | | 31.10.83 | 21.10.83 | 99.858 | - | 0.142 | - | n.d. | n.d. | n.d. | n.d. | | 01.11.83 | 21.10.83 | 99.855 | - | 0.145 | - | n.d. | n.d. | n.d. | n.d. | | 02.10.83 | 21.10.83 | 99.868 | _ | 0.128 | - | n.d. | n.d. | 0.0042 ⁹⁵ Nb | n.d. | | 03.11.83 | 21.10.83 | 99.696 | - | 0,160 | - | 0.128 | 0.0092 ⁹⁵ Zr | 0.0063 ⁹⁵ Nb | n.d. | | 04.10.83 | 21.10.83 | 99.809 | ~ | 0.173 | - | n.d. | 0.0126 ⁹⁵ Zr | 0.0061 ⁹⁵ Nb | n.d. | | 07.11.83 | 21.10.83 | 99.832 | • | 0.154 | - | n.d. | 0.0068 ⁹⁵ Zr | 0.0064 ⁹⁵ Nb | n.d. | | Impurity Conce
Calculation of I | | | 1.1 × 10 ⁻³ | 0.122 | 1.2 × 10 ⁻² | 0.094 | 0.0082 ⁹⁵ Zr | 0.0058 ⁹⁵ Nb | - | TABLE B9 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 307-3B | | | | | Perc | entage of the | Total Activ | vlty | | _ | |---------------------|-------------------|------------------|------------------------|-------------------|---------------------------------------|------------------|--------------------------|--------------------------|--------------------------| | Measurement
Date | Reference
Date | ⁹⁹ Mo | 131 | ¹⁰³ Ru | ¹³² Te | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 21,10,83 | 21.10.83 | 99.962 | 1.3 × 10 ⁻³ | n.d. | 6.2 × 10 ⁻³ | 0.0299 | n.d. | n.d. | 0.0079 ¹⁴⁰ Ba | | 24,10.83 | 21.10.83 | 99.985 | - | 0.0149 | - | n.d. | n.d. | n.d. | n.d. | | 25.10.83 | 21.10.83 | 99.911 | 6.8×10^{-4} | 0.0244 | 5.3×10^{-3} | 0.0412 | 0.0236 ⁹⁵ Zr | n.d. | n.d. | | 26.10.83 | 21,10,83 | 99.965 | - | 0.0233 | - | n.d. | 0.0117 ⁹⁵ Zr | n.d. | n.d. | | 27,10.83 | 21.10.83 | 99.871 | - | 0.0247 | - | 0.0944 | 0.0096 ⁹⁵ Zr | n.d. | n.d. | | 28.10.83 | 21.10.83 | 99.901 | - | 0.0279 | - | 0.0643 | 0.0070 ⁹⁵ Zr | n.d. | n .d . | | 31,10.83 | 21.10.83 | 99.957 | - | 0.0236 | - | n.d. | 0.0136 ⁹⁵ Zr | 0.0056 ⁹⁵ Nb | n.d. | | 01.11.83 | 21.10.83 | 99.942 | - | 0.0339 | - | n.d. | 0.0126 ⁹⁵ Zr | 0.0062 ⁹⁵ NЬ | 0.0058 ¹⁴⁰ Ba | | 02.11.83 | 21,10.83 | 99.954 | | 0.0273 | · · · · · · · · · · · · · · · · · · · | n.d. | 0.0124 ⁻⁹⁵ Zr | 0.0060 ⁻⁹⁵ NЬ | n.d. | | 03.11.83 | 21.10.83 | 99.930 | - | 0.0382 | - | n.d. | 0.0174 ⁹⁵ Zr | 0.0090 ⁹⁵ Nb | 0.0060 ¹⁴⁰ Ba | | 04.11.83 | 21.10.83 | 99.942 | • | 0.0467 | - | n.d. | n.đ. | 0.0108 ⁹⁵ Nb | n.d. | | 07.11.83 | 21.10.83 | 99.934 | - | 0.0330 | - | n.d. | 0.0152 ⁹⁵ Zr | 0.0108 ⁹⁵ Nb | 0.0068 ¹⁴⁰ Ba | | Impurity Conce | | | 1.3 × 10 ⁻³ | 0.0289 | 6.2 × 10 ⁻³ | 0.0575 | 0.0137 ⁹⁵ Zr | 0.0081 ⁹⁵ Nb | 0.0066 ¹⁴⁰ Ba | TABLE B10 RADIONUCLIDIC PURITY ANALYSIS OF PRODUCTION BATCHES OF f.p. ⁹⁹Mo BATCH NO. 307-4A | | | | | Per | rcentage of the | e Total Act | ivity | | | |---------------------|-------------------|------------------|------------------------|-------------------|------------------------|------------------|-------------------------|--------------------------|--------------------------| | Measurement
Date | Reference
Date | ⁹⁹ Mo | ¹³¹ [| ¹⁰³ Ru | ¹³² Tə | 132 | ¹²⁷ Sb
A | Impurity
B | Impurity
C | | 28.10.83 | 28.10.83 | 99.896 | 6.0 × 10 ⁻³ | 0.0248 | 6.0 × 10 ⁻³ | 0.0795 | n.d. | n.d. | n.d. | | 31.11.83 | 28.10.83 | 99.936 | 1.3×10^{-2} | 0.0642 | 8.5 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | | 01.11.83 | 28.10.83 | 99.884 | - | 0.0587 | - | 0.0567 | n.d. | n.d. | n.d. | | 02.11.83 | 28.10.83 | 99.789 | - | 0.0674 | - | 0.124 | 0.0129 ⁹⁵ Zr | n.d. | 0.0068 ¹⁴⁰ Ba | | 03.11.83 | 28.10,83 | 99.817 | - | 0.0540 | - | 0.106 | 0.0229 ⁹⁵ Zr | n.d. | n.d. | | 04.11.83 | 28.10.83 | 99.915 | - | 0.0604 | - | n.d. | 0.0160 ⁹⁵ Zr | 0.0079 ⁹⁵ Nb | n.d. | | 07.11.83 | 28.10.83 | 99.817 | - | 0.0573 | - | 0.102 | 0.0185 ⁹⁵ Zr | 0.0050 95Nb | n.d. | | 08.11.83 | 28.10.83 | 99.896 | - | 0.0607 | - | n.d. | 0.0264 ⁹⁵ Zr | 0.0071 ⁹⁵ Nb | 0.0093 ¹⁴⁰ Ba | | 09.11.83 | 28.10.83 | 99.916 | - | 0.0593 | - | n.d. | 0.0160 ⁹⁵ Zr | 0.0072 ⁹⁵ Nb | n.d. | | 10.11.83 | 28.10.83 | 99.907 | - | 0.0718 | - | n.d. | 0.0151 ⁹⁵ Zr | 0.0062 ⁹⁵ Nb | n.d. | | 11.11.83 | 28.10.83 | 99.915 | - | 0.0558 | - | n.d. | 0.0171 ⁹⁵ Zr | 0.0064 ⁹⁵ Nb | 0.0061 ¹⁴⁰ Ba | | 14.11.83 | 28.10.83 | 99.907 | - | 0.0626 | - | n.d. | 0.0211 ⁹⁵ Zr | 0.0094 ⁹⁵ Nb | n.d. | | Impurity Conce | | | 1.3 × 10 ⁻² | 0.0581 | 8.5 × 10 ⁻³ | 0.0936 | 0.0183 ⁹⁵ Zr | 0.00703 ⁹⁵ Nb | 0.0074 ¹⁴⁰ Ba | ### TABLE B11 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 306-4A #### (a) Generator No. 1 #### (b) Generator No. 2 Activity 22.4 GBq Calibration Date 3.10.83 Activity 150 GBq Calibration Date 3.10.83 | Eluate
No. | Elution
Date | Elution
Efficiency | Eluate
No. | Elution
Date | Elution
Efficiency | |---------------|-----------------|-----------------------|---------------|-----------------|-----------------------| | 1 | 04.10.83 | 98.18 | · 1 | 04.10.83 | 94.51 | | 2 | 05.10.83 | 90.63 | . 2 | 05.10.83 | 94.53 | | 3 | 06.10.83 | 81.42 | 3 | 06.10.83 | 94.47 | | 4 | 07.10.83 | 77.07 | 4 | 07.10.83 | 93.78 | | 5 | 10.10.83 | 77.59 | 5 | 10.10.83 | 95.54 | | 6 | 11.10.83 | 83.48 | 6 | 11.10.83 | 93.50 | | 7 | 12.10.83 | 77.33 | 7 | 12.10.83 | 88.73 | | 8 | 13.10.83 | 79.57 | 8 | 13.10.83 | 87.05 | | 9 | 14.10.83 | 91.74 | 9 | 14.10.83 | 82.07 | | 10 | 17.10.83 | 88.05 | 10 | 17.10.83 | 85.50 | Index No.1 Pass Index No.2 4th Class Index No.1 Pass Index No.2 1st Class ### TABLE B12 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 306-4B #### (a) Generator No. 3 #### (b) Generator No. 4 Activity 22.3 GBq Calibration Date 3.10.83 Activity 162 GBq Calibration Date 3.10.83 | Eluate | Elution | Elution | |--------|----------|------------| | No. | Date | Efficiency | | 1 | 04.10.83 | 96.93 | | 2 | 05.10.83 | 84.11 | | 3 | 06.10.83 | 70.86 | | 4 | 07.10.83 | 64.95 | | 5 | 10.10.83 | 64.75 | | 6 | 11.10.83 | 80.63 | | 7 | 12.10.83 | 79.56 | | 8 | 13.10.83 | 81.07 | | 9 | 14.10.83 | 91.95 | | 10 | 17.10.83 | 84.93 | | Eluate
No. | Elution
Date | Etution
Efficiency | |---------------|-----------------|-----------------------| | 1 | 04.10.83 | 97.08 | | 2 | 05.10.83 | 96.76 | | 3 | 06.10.83 | 95.70 | | 4 | 07.10.83 | 95.59 | | 5 | 10.10.83 | 92.82 | | 6 | 11.10.83 | 95.55 | | 7 | 12.10.83 | 94.13 | | 8 | 13.10.83 | 92.30 | | 9 | 14.10.83 | 94.75 | | 10 | 17.10.83 | 91.31 | | | | | Index No.1 Pass Index No.2 4th Class ### TABLE B13 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 306-4C #### (a) Generator No. 5 #### (b) Generator No. 6 Activity 23 GBq Calibration Date 3.10.83 Activity 163 GBq Calibration Date 3.10.83 | Elution
Date | Elution
Efficiency | Eluate Elution
No. Date | Elution
Efficiency | |-----------------|---|--|--| | 04.10.83 | 97.72 | 1 04.10.83 | 95.40 | | 05.10.83 | 92.52 | 2 05.10.83 | 94.26 | | 06,10,83 | 82.41 | 3 06.10.83 | 93.63 | | 07.10.83 | 74.96 | 4 07.10.83 | 93.04 | | 10.10.83 | 79.36 | 5 10.10.83 | 94.29 | | 11.10.83 | 81.50 | 6 11.10.83 | 95.70 | | 12.10.83 | 80.32 | 7 12.10.83 | 93.05 | | 13.10.83 | 83.46 | 8 13.10.83 | 93.28 | | 14.10.83 | 85.69 | 9 14.10.83 | 92.11 | | 17.10.83 | 88.00 | 10 17.10.83 | 90.22 | | | Date 04.10.83 05.10.83 06.10.83 07.10.83 10.10.83 11.10.83 12.10.83 14.10.83 | Date Efficiency 04.10.83 97.72 05.10.83 92.52 06.10.83 82.41 07.10.83 74.96 10.10.83 79.36 11.10.83 81.50 12.10.83 80.32 13.10.83 83.46 14.10.83 85.69 | Date Efficiency No. Date 04.10.83 97.72 1 04.10.83 05.10.83 92.52 2 05.10.83 06.10.83 82.41 3 06.10.83 07.10.83 74.96 4 07.10.83 10.10.83 79.36 5 10.10.83 11.10.83 81.50 6 11.10.83 12.10.83 80.32 7 12.10.83 13.10.83 83.46 8 13.10.83 14.10.83 85.69 9 14.10.83 | Index No.1 Pass Index No.2 4th Class Index No.1 Pass Index No.2 1st Class ### TABLE B14 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 307-1A #### (a) Generator No. 7 #### (b) Generator No. 8 Activity 26 GBq Calibration Date 10.10.83 Activity 177 GBq Calibration Date 10.10.83 | Eluate | Elution | Elution | |--------|----------|------------| | No. | Date | Efficiency | | 1 | 10.10.83 | 90.08 | | 2 | 11.10.83 | 72.91 | | 3 | 12.10.83 | 55.76 | | 4 | 13,10.83 | 58.85 | | 5 | 14.10.83 | 93.58 | | 6 | 16.10.83 | 92.41 | | 7 | 18.10.83 | 95.87 | | 8 | 19.10.83 | 79.60 | | 9 | 20.10.83 | 93.99 | | 10 | 21.10.83 | 87.08 | | 11 | 24.10.83 | 93.62 | | Eluate
No. | Elution
Date | Elution
Efficiency | |---------------|-----------------
-----------------------| | 1 | 10.10.83 | 89.54 | | 2 | 11.10.83 | 92.03 | | 3 | 12.10.83 | 93.73 | | 4 | 13.10.83 | 95.20 | | 5 | 14.10.83 | 96.30 | | 6 | 16.10.83 | 93.43 | | 7 | 18.10.83 | 97.79 | | 8 | 19,10.83 | 93.04 | | 9 | 20.10.83 | 93.14 | | 10 | 21.10.83 | 92.28 | | 11 | 24.10.83 | 92.52 | Index No.1 Fall Index No.2 4th Class ### TABLE B15 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 307-1B #### (a) Generator No. 9 #### Activity 28 GBq Calibration Date 10.10.83 #### (b) Generator No. 10 Activity 172 GBq Calibration Date 10.10.83 | Eluate
No. | Elution
Date | Elution
Efficiency | Eluate
No. | Elution
Date | Elution
Efficiency | |---------------|-----------------|-----------------------|---------------|-----------------|-----------------------| | 1 | 10.10,83 | 92.95 | 1 | 10.10.83 | 94.25 | | 2 | 11.10.83 | 92.06 | 2 | 11.10.83 | 89.92 | | 3 | 12.10.83 | 89.33 | 3 | 12.10.83 | 89.33 | | 4 | 13.10.83 | 78.61 | 4 | 13.10.83 | 88.96 | | 5 | 14.10.83 | 76.37 | 5 | 14.10.83 | 90.31 | | 6 | 16.10.83 | 71.35 | 6 | 16.10.83 | 88.61 | | 7 | 18.10.83 | 74.15 | 7 | 18.10.83 | 89.05 | | 8 | 19.10.83 | 79.28 | 8 | 19.10.83 | 71.96 | | 9 | 20.10.83 | 79.18 | 9 | 20.10.83 | 68.43 | | 10 | 21.10.83 | 83.03 | 10 | 21.10.83 | 68.30 | | 11 | 24.10.83 | 89.05 | 11 | 24.10.83 | 71.90 | Index No.1 Pass Index No.2 4th Class Index No.1 Pass Index No.2 1st Class ### TABLE B16 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 307-2A #### (a) Generator No. 11 Activity 27.9 GBq Calibration Date 17.10.83 #### (b) Generator No. 12 Activity 163.9 GBq Calibration Date 17.10.83 | Eluate
No. | Elution
Date | Elution
Efficiency | |---------------|-----------------|-----------------------| | 1 | 17.10.83 | 95.78 | | 2 | 18.10.83 | 97.30 | | 3 | 19.10.83 | 91.43 | | 4 | 20.10.83 | 86.03 | | 5 | 21.10.83 | 79.74 | | 6 | 24.10.83 | 83.83 | | 7 | 25.10.83 | 79.88 | | 8 | 26.10.83 | 80.89 | | 9 | 27.10.83 | 82.38 | | 10 | 28.10.83 | 85.98 | | 11 | 31.10.83 | 87.04 | | | | | | - | | | |--------|----------|------------| | Eluate | Elution | Elution | | No. | Date | Efficiency | | 1 | 17.10.83 | 93.22 | | 2 | 18.10.83 | 96.22 | | 3 | 19.10.83 | 94.59 | | 4 | 20.10.83 | 94.01 | | 5 | 21.10.83 | 93.10 | | 6 | 24.10.83 | 94,64 | | 7 | 25.10.83 | 95.64 | | 8 | 26.10.83 | 94.36 | | 9 | 27.10.83 | 92.84 | | 10 | 28.10.83 | 94.21 | | 11 | 31.10.83 | 94.74 | Index No.1 Pass Index No.2 4th Class ### TABLE B17 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 307-2B #### (a) Generator No. 13 #### (b) Generator No. 14 Activity 22.4 GBq Calibration Date 17.10.83 Activity 164 GBq Calibration Date 17.10.83 | Eluate
No. | Elution
Date | Elution
Efficiency | Eluate
No. | Elution
Date | Elution
Efficiency | |---------------|-----------------|-----------------------|---------------|-----------------|-----------------------| | 1 | 17.10.83 | 95.75 | 1 | 17.10.83 | 96.78 | | 2 | 18.10.83 | 95.94 | 2 | 18.10.83 | 98.34 | | 3 | 19.10.83 | 87.06 | 3 | 19.10.83 | 95.52 | | 4 | 20.10.83 | 82.12 | 4 | 20,10.83 | 94.63 | | 5 | 21.10.83 | 75.18 | 5 | 21.10.83 | 94.00 | | 6 | 24.10.83 | 82.49 | 6 | 24.10.83 | 94.55 | | 7 | 25.10.83 | 78.77 | 7 | 25.10.83 | 94.00 | | 8 | 26.10.83 | 78.98 | 8 | 26.10.83 | 87.58 | | 9 | 27.10.83 | 79.88 | 9 | 27.10.83 | 81.02 | | 10 | 28.10.83 | 84.40 | 10 | 28.10.83 | 80.30 | | 11 | 31,10.83 | 90.14 | 11 | 31,10,83 | 83.89 | Index No.1 Pass Index No.2 4th Class Index No.1 Pass Index No.2 1st Class ### TABLE B18 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 307-3A #### (a) Generator No. 15 #### (b) Generator No. 16 Activity 23.0 GBq Calibration Date 24.10.83 Activity 138.0 GBq Calibration Date 24.10.83 | Eluate | Elution | Elution | |--------|-----------|------------| | No. | Date | Efficiency | | 1 | 24.10.83 | 95.86 | | 2 | 25.10.83 | 89.90 | | 3 | 26.10.83 | 79.30 | | 4 | 27.10.83 | 61.39 | | 5 | 28.10.83 | 70.03 | | 6 | 31.10.83 | 57.03 | | 7 | 01.11.83 | 71.24 | | 8 | 02.11.83 | 74.54 | | 9 | 03.11.83 | 78.61 | | 10 | 04.11.83 | 89.83 | | 11 | 07.11.83. | 88.32 | | Eluate
No. | Elution
Date | Elution
Efficiency | |---------------|-----------------|-----------------------| | 1 | 24.10.83 | 95.99 | | 2 | 25.10.83 | 93.45 | | 3 | 26.10.83 | 94.71 | | 4 | 27.10.83 | 93.28 | | 5 | 28.10.83 | 88.71 | | 6 | 31.10.83 | 93.84 | | 7 | 01.11.83 | 88.44 | | 8 | 02.11.83 | 81.80 | | 9 | 03.11.83 | 80.85 | | 10 | 04.11.83 | 79.74 | | 11 | 07.11.83 | 81.87 | Index No.1 Fall Index No.2 4th Class ### TABLE B19 GENERATOR ELUTION EFFICIENCIES FOR ⁹⁹Mo BATCH No. 307-3B #### (a) Generator No. 17 ### Activity 22 GBq Calibration Date 24.10.83 #### (b) Generator No. 18 Activity 164 GBq Calibration Date 24.10.83 | Eluate
No. | Elution
Date | Elution
Efficiency | Eluate
No. | Elution
Date | Elution
Efficiency | |---------------|-----------------|-----------------------|---------------|-----------------|-----------------------| | 1 | 24.10.83 | 98.64 | 1 | 24.10.83 | 96.79 | | 2 | 25.10.83 | 98.37 | 2 | 25.10.83 | 96.26 | | 3 | 26.10.83 | 100.45 | 3 | 26.10.83 | 97.61 | | 4 | 27.10.83 | 90.29 | 4 | 27.10.83 | 97.02 | | 5 | 28.10.83 | 91.17 | 5 | 28.10.83 | 97.16 | | 6 | 31.10.83 | 97.98 | 6 | 31.10.83 | 96.46 | | 7 | 01.10.83 | 88.65 | 7 | 01.11.83 | 96.19 | | 8 | 02.11.83 | 86.77 | 8 | 02.11.83 | 96.34 | | 9 | 03.10.83 | 88.99 | 9 | 03.11.83 | 96.90 | | 10 | 04.10.83 | 91.89 | 10 | 04.11.83 | 95.33 | | 11 | 07.11.83 | 98.74 | 11 | 07.11.83 | 96.07 | Index No.1 Pass Index No.2 3rd Class Index No.1 Pass Index No.2 1st Class ### TABLE B20 GENERATOR ELUTION EFFICIENCIES FOR 99Mo BATCH No. 307-4A #### (a) Generator No. 19 Activity 34 GBq Calibration Date 31.10.83 #### (b) Generator No. 20 Activity 160 GBq Calibration Date 30.10.83 | Eluate | Elution | Elution | |--------|----------|------------| | No. | Date | Efficiency | | 1 | 31.11.83 | 90.96 | | 2 | 01.11.83 | 92.46 | | 3 | 02.11.83 | 91.27 | | 4 | 03.11.83 | 88.46 | | 5 | 04.11.83 | 83.34 | | 6 | 07.11.83 | 84.95 | | 7 | 08.11.83 | 86.44 | | 8 | 09.11.83 | 86.60 | | 9 | 10.11.83 | 90.28 | | 10 | 11.11.83 | 91.23 | | 11 | 14.11.83 | 90.25 | | Eluate | Elution | Elution | |--------|----------|------------| | No. | Date | Efficiency | | 1 | 31.10.83 | 95.06 | | 2 | 01.11.83 | 91.70 | | 3 | 02.11.83 | 91.89 | | 4 | 03.11.83 | 92.45 | | 5 | 04.11.83 | 91.23 | | 6 | 07.11.83 | 92.10 | | 7 | 08.11.83 | 91.34 | | 8 | 09.11.83 | 90.69 | | 9 | 10.11.83 | 88.48 | | 10 | 11.11.83 | 85.47 | | 11 | 14.11.83 | 88.32 | Index No.1 Pass Index No.2 2nd Class TABLE B21 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.1 99 Mo Batch 306-4A | | | | Radion | ucildic Pu | rity (as percer | ntage of ^{99m} T | c activity) | | | | |---------------|------------------------|------------------------|------------------------|-------------------|----------------------|---------------------------|-------------------|------------------------|-------------------|--------| | Eluate
No. | 99Mo | 131 | 132 | ¹³² Тө | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 2.4 × 10 ⁻⁴ | 1.4 × 10 ⁻⁵ | 1.0 × 10 ⁻⁴ | n.d. | 2.0×10^{-5} | 2.1×10^{-5} | n.d. | 3.0×10^{-6} | n.d. | n.d. | | 2 | 1.6×10^{-4} | 6.0×10^{-5} | 9.6×10^{-4} | n.d. | n.d. | 4.0×10^{-5} | n.d. | 4.0×10^{-6} | n.d. | n.d. | | 3 | 1.6×10^{-4} | 7.0×10^{-5} | 1.2×10^{-3} | n.d. | n.d. | n.d. | ก.d. | 1.0 × 10 ^{−5} | n.d. | n.d. | | 4 | 1.7×10^{-4} | 7.0×10^{-5} | 1.3 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.d. | n.d. | | 5 | 1.7×10^{-4} | 8.0×10^{-5} | 1.2 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 6.0 × 10 ⁻⁵ | n.d. | n.d. | | 6 | n.d. | 1.4×10^{-4} | 2.9×10^{-3} | n.d. | n.d. | n.d. | n.d. | 5.0×10^{-5} | n.d. | n.d. | | 7 | 1.5×10^{-4} | 1.3×10^{-4} | 2.6 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 9.0×10^{-5} | n.d. | n.d. | | 8 | 1.5×10^{-4} | 1.0×10^{-4} | 3.0 × 10 ^{−3} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-4} | n.d. | n.d. | | 9 | 9.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁴ | 3.4 × 10 ⁻³ | <u>n.d.</u> | n.d. | n.d. | n.d. | 1.0×10^{-4} | n.d. | n.d. | | 10 | n.d | 7.0×10^{-5} | | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-4} | n.d. | n.d. | TABLE B22 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.2 99 Mo Batch 306-4A | | , | | Radi | onuclidic Puri | ty (as per | centage o | of ^{99m} Tc a | ectivity) | | | |---------------|------------------------|----------------------|------------------------|----------------------|-------------------|-------------------|------------------------|------------------------|-------------------|--------------------------| | Eluate
No. | ⁹⁹ Mo | 131 | 132 | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 5.1 × 10 ⁻³ | n.d. | 2.0 × 10 ⁻⁵ | n.d. | 2 | 7.0×10^{-3} | n.d. | 3.0×10^{-5} | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.đ. | | 3 | 7.6×10^{-3} | n.d. | 5.0 × 10 ⁻⁵ | n.d. | n.d. | n.d. | n.d. | n.d. | n.đ. | n.d. | | 4 | 7.1×10^{-3} | n.d. | 8.0×10^{-5} | n.d. | 5 | 6.9×10^{-3} | n.d. | 8.0 × 10 ⁻⁵ | n.d. | 6 | 7.9×10^{-3} | n.d. | 6.4×10^{-4} | n.d. | 7 | 7.7×10^{-3} | n.d. | 3.5×10^{-4} | n.d. | n.d. | n.d. | n.d. | 4.0 × 10 ^{–6} | n.d. | n.d. | | 8 | 8.0 × 10 ^{−3} | 1.0×10^{-4} | 4.8×10^{-4} | n.đ. | n.d. | n.d. | n.đ. | 6.0 × 10 ^{–6} | n.d. | n.d. | | 9 | 8.6×10^{-3} | 2.0×10^{-4} | 7.5 × 10 ⁴ | 1.8×10^{-6} | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.đ. | n.d. | | 10 | 8.4×10^{-3} | | 7.9×10^{-4} | n.d. | n.d. | n.d. | n.d. | 3.0 × 10 ⁻⁵ | n.d. | 3.0×10^{-5} 140 | TABLE B23 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.3 99 Mo Batch 306-4B | | | | Radion |
uclidic Pu | rity (as percei | ntage of ^{99m} T | c activity) | ., | | - - , | |---------------|------------------------|------------------------|------------------------|-------------------|----------------------|---------------------------|-------------------|------------------------|-------------------|------------------| | Eluate
No. | ⁹⁹ Mo | 131 | ¹³² | ¹³² Te | ¹¹² Ag | ¹¹² Pd | 239 _{Np} | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 1.4 × 10 ⁻⁴ | 2.1 × 10 ⁻⁴ | 1.1 × 10 ⁻⁴ | n.d. | 7.0×10^{-5} | 4.0 × 10 ⁻⁵ | n.d. | 1.0 × 10 ⁻⁶ | n.d. | n.d. | | 2 | 1.2×10^{-4} | 4.8×10^{-4} | 1.6 × 10 ^{−3} | n.d. | n.d. | 1.0×10^{-4} | n.d. | 2.0×10^{-5} | n.d. | n.d. | | 3 | 1.5×10^{-4} | 5.2 × 10 ⁻⁴ | 1.5×10^{-3} | n.d. | n.d. | n.d. | n.d. | 6.0×10^{-5} | n.d. | n.d. | | 4 | 1.9×10^{-4} | 5.0×10^{-4} | 1.5×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-4} | n.d. | n.d. | | 5 | 2.0×10^{-4} | 6.4×10^{-4} | 1.5×10^{-3} | ก.d. | n.d. | n.d. | n.d. | 4.4×10^{-4} | n.d. | n.d. | | 6 | 1.2×10^{-4} | 6.2×10^{-4} | 2.3×10^{-3} | n.đ. | n.d. | n.d. | n.d. | 4.1×10^{-4} | n.d. | n.d. | | 7 | 1.9×10^{-4} | 6.3×10^{-4} | 2.7×10^{-3} | n.d. | n.d. | n.d. | n.d. | 4.5×10^{-4} | n.d. | n.d. | | 8 | 1.9×10^{-4} | 5.1 × 10 ⁻⁴ | 3.1×10^{-3} | n.d. | n.d. | n.d. | n.d, | 5.0×10^{-4} | n.d. | n.d, | | 9 | 1.3×10^{-4} | 3.8×10^{-4} | 3.5×10^{-3} | n.d. | n.d. | n.d. | n.d. | 4.3×10^{-4} | n.d. | n.d. | | 10 | 2.6 × 10 ⁻⁴ | 4.6 × 10 ⁻⁴ | 2.7×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻³ | n.d. | n.d. | TABLE B24 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.4 99Mo Batch 306-4B | | | | | Radionuc | lidic Purity (as | percenta | ge of ^{99m} Tc a | activity) | | , <u>-</u> ,,, | |---------------|------------------------|------------------------|------------------------|-------------------|------------------------|-------------------|---------------------------|------------------------|------------------------|--------------------------------------| | Eluate
No. | ⁹⁹ Mo | 131 _[| ¹³² | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 1.8 × 10 ⁻⁴ | 7.0 × 10 ⁻⁵ | 5.0 × 10 ⁻⁵ | n.d. | 4.0 × 10 ⁻⁵ | n.d. | n.d. | 4.0 × 10 ⁻⁶ | 3.0 × 10 ⁻⁶ | n.d. | | 2 | 1.8×10^{-4} | 3×10 ⁵ | 8.0×10^{-5} | n.d. | 3.0 × 10 ^{–5} | n.d. | 1.0×10^{-5} | 5.0 × 10 ⁻⁶ | | n.d. | | 3 | 1.9×10^{-4} | 3.0×10^{-5} | 1.0×10^{-4} | n.d. | 1.0×10^{-5} | n.d. | 1.0×10^{-5} | 3.0×10^{-6} | 2.0×10^{-6} | n.d. | | 4 | 1.5×10^{-4} | 4.0×10^{-5} | | n.d. | 1.0×10^{-5} | n.d. | n.d. | 3.0 × 10 ⁶ | | 1.0 × 10 ⁻⁶ 140La | | 5 | 2.0×10^{-4} | 6.0×10^{-5} | 1.1×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | 3.0×10^{-6} | n.d. | | 6 | 2.0×10^{-4} | 1.1×10^{-4} | | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | | 6×10 ⁻⁶ 140La | | 7 | 2.4×10^{-4} | 2.1×10^{-4} | | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.d. | n.d. | | 8 | 3.2×10^{-4} | | | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.d. | n.d. | | 9 | 1.1×10^{-4} | 1.7×10^{-3} | | n.d. | n.d. | n.d. | n.d, | 4.0×10^{-6} | n.d. | n.d. | | 10 | 2.6×10^{-4} | 1.9×10^{-3} | 6.9×10^{-4} | n.d. | n.d. | n.d. | n.d. | 3.0×10^{-5} | n.d. | 2×10 ⁻⁵ 140 _{La} | TABLE B25 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.5 99 Mo Batch 306-4C | | | | Radio | nuclidic l | Purity (as perc | entage of ^{99m} | ¹Tc activit | у) | | | |---------------|------------------------|------------------------|------------------------|-------------------|------------------------|--------------------------|-------------------|--------------------------|------------------------|--------| | Eluate
No. | ⁹⁹ Mo | 131 | 132 | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 2.1 × 10 ⁻⁴ | 1.8 × 10 ⁻⁴ | 1.3 × 10 ⁴ | n.d. | 5.0 × 10 ⁻⁵ | 2.0×10^{-5} | n.d. | 1.0 × 10 ⁻⁵ | 5.0 × 10 ⁻⁶ | n.d. | | 2 | 6.0×10^{-5} | | 9.4×10^{-4} | n.d. | 6.0 × 10 ⁻⁵ | 4.0×10^{-5} | n.d. | 1.0 × 10 ⁻⁵ | n.d. | n.d. | | 3 | 1.8×10^{-4} | 4.3×10^{-4} | 9.7×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ · | n.d. | n.d. | | 4 | 7.0×10^{-5} | 4.2×10^{-4} | 8.9×10^{-4} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.đ. | n.d. | | 5 | 9.0 × 10 ⁻⁵ | 4.6×10^{-4} | 8.5×10^{-4} | n.d. | n.d. | n.d. | n.d. | 8.0 × 10 ⁻⁵ | n.d. | n.d. | | 6 | n.d. | 6.3×10^{-4} | 1.4×10^{-3} | n.d. | n.d. | n.d. | n.d. | 7.0 × 10 ⁻⁵ | n.d. | n.d. | | 7 | n.d. | 6.6×10^{-4} | 1.5×10^{-3} | n.d. | n,d. | n.d. | n.d. | 1.0×10^{-4} | n.d. | n.d. | | 8 | n.d. | 5.1×10^{-4} | 1.6×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.3×10^{-4} | n.d. | n.d. | | 9 | n.d | 4.3 × 10 ⁻⁴ | 1.9 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁴ | n.d | n.d. | | 10 | n.d. | 4.0×10^{-4} | 1.6×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.6×10^{-4} | n.d. | n.d. | TABLE B26 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.6 99 Mo Batch 306-4C | | | | Radion | uclidic Pu | rity (as po | ercentage | of ^{99m} Tc acti | vity) | | | |---------------|------------------------|------------------------|------------------------|-------------------|-------------------|-------------------|---------------------------|------------------------|------------------------|--------| | Eluate
No. | ⁹⁹ Mo | 131 | 132 | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 2.6 × 10 ⁻⁴ | 5.0 × 10 ⁻⁵ | 5.0 × 10 ⁻⁵ | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | 5×10 ⁻⁶ | n.d. | | 2 | 3.4×10^{-4} | 2.0×10^{-5} | 8.0×10^{-5} | n.d. | n.d. | n.d. | 1.0×10^{-5} | 7.0×10^{-6} | 7.0×10^{-6} | n.d. | | 3 | 2.9×10^{-4} | 2.0×10^{-5} | 9.0×10^{-5} | n.d. | n.d. | n.d. | n.d. | 5.0×10^{-6} | 5.0 × 10 ^{–6} | n.d. | | 4 | 2.2×10^{-4} | 2.0×10^{-5} | 9.0×10^{-5} | n.d. | n.d. | n.d. | n.d. | 3.9×10^{-6} | 3.0×10^{-6} | n.d. | | 5 | 2.3×10^{-4} | 3.0×10^{-5} | 1.0×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | 5.0×10^{-6} | n.d. | | 6 | 2.7×10^{-4} | 4.0×10^{-5} | 1.7×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | 5.0×10^{-6} | n.d. | | 7 | 2.5×10^{-4} | 1.0×10^{-5} | 1.9×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | 5.0×10^{-6} | n.d. | | 8 | 2.9×10^{-4} | 1.9×10^{-5} | 2.7×10^{-4} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | 1.0×10^{-5} | n.d. | | 9 | 2.8×10^{-4} | 3.8×10^{-5} | | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.d. | n.d. | | 10 | 2.0×10^{-4} | 7.7×10^{-5} | | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.d. | n.d. | TABLE B27 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.7 99Mo Batch 307-1A | | | | Radionuc | lidic Purit | y (as percenta | ige of ⁹⁹ⁿ | ⁿ Tc activit | y) | | | |---------------|------------------------|------------------------|------------------------|-------------------|----------------------|-----------------------|-------------------------|------------------------|-------------------|--------| | Eluate
No. | ⁹⁹ Mo | ¹³¹ | ¹³² | ¹³² Тө | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 8.8 × 10 ⁻⁴ | 3.0 × 10 ⁻⁵ | 1.5 × 10 ⁻⁴ | n.d. | 3.0×10^{-5} | n.d. | n.d. | 6.0 × 10 ⁻⁶ | n.d. | n.d. | | 2 | 9.6×10^{-4} | 7.0×10^{-5} | 6.1×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | n.d. | n.d. | | 3 | 1.3×10^{-3} | 8.5×10^{-5} | 7.8×10^{-4} | n.d. | n.d. | n.d. | n.d. | 3.0×10^{-5} | n.d. | n.d. | | 4 | 1.1 × 10 ⁻³ | 1.3×10^{-4} | 1.6×10^{-3} | n.d. | n.d. | n.d. | n.d. | 5.0×10^{-5} | n.d. | n.d. | | 5 | 6.6×10^{-4} | 7.0×10^{-5} | 5.6×10^{-4} | n.d. | n.d. | n.d. | n.d. | 5.0×10^{-5} | n.d. | n.d. | | 6 | 6.9×10^{-4} | 6.0×10^{-5} | 2.9×10^{-4} | n.d. | n.d. | n.d. | n.d. | 6.0×10^{-5} | n.d. | n.d. | | 7 . | 8.9×10^{-4} | n.d. | 2.6×10^{-4} | n.d. | n.d. | n.d. | n.d. | 6.0×10^{-5} | n.d. | n.d. | | 8 | 1.1×10^{-3} | 6.0 × 10 ⁻⁵ | 1.1×10^{-3} | n.d. | n.d. | n.d. | n.d. | 7.0×10^{-5} | n.d. | n.d. | | 9 | 1.3 × 10 ⁻³ | n.d. | 5.7×10^{-4} | n.d. | n.d. | n.d. | n.d. | 7.0×10^{-5} | n.d. | n.d. | | 10 | 1.5 × 10 ⁻³ | 1.3 × 10 ⁻⁴ | 1.3 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 8.0 × 10 ⁻⁵ | n.d. | n.d. | | 11 | 1.6 × 10 ⁻³ | 7.0×10^{-5} | 9.5×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.4×10^{-4} | n.d. | n.d. | TABLE B28 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.8 99Mo Batch 307-1A | | | | Radionuc | lidic Purit | y (as percenta | ige of ⁹⁹ⁿ | ¹ Tc activit | y) | | | |---------------|------------------------|------------------------|------------------------|-------------------|----------------------|-----------------------|-------------------------|------------------------|-------------------|--------| | Eluate
No. | 99 _{Mo} | 131 | 132 | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 1.2 × 10 ⁻³ | 1.0 × 10 ⁻⁵ | 6.0×10^{-5} | n.d. | 2.0×10^{-5} | n.d. | n.d. |
1.0 × 10 ⁻⁶ | n.d. | n.d. | | 2 | 1.9 × 10 ⁻³ | 2.0 × 10 ⁻⁵ | 1.0×10^{-5} | n.d. | 1.0×10^{-5} | n.d. | n.d. | 2.0×10^{-6} | n.d. | n.d. | | 3 | 2.3×10^{-3} | n.d. | 2.0×10^{-5} | n.d. | n.ď. | n.đ. | n.d. | 2.0×10^{-6} | n.d. | n.d. | | 4 | 1.9 × 10 ⁻³ | n.d. | 4.0×10^{-5} | n.d. | 1.0×10^{-5} | n.d. | n.d. | n.d. | n.d. | n.d | | 5 | 1.8 × 10 ⁻³ | n.d. | 4.0×10^{-5} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-6} | n.d. | n.d | | 6 | 4.7 × 10 ^{−3} | n.d. | 3.0×10^{-5} | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.đ. | n.d | | 7 | 2.2×10^{-3} | 3.0×10^{-5} | 8.0 × 10 ^{–5} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-6} | n.d. | n.d. | | 8 | 3.6×10^{-3} | 7.0×10^{-5} | 9.0×10^{-5} | n.d. | n.d. | n.d, | n.d. | n.d. | n.d. | n.d. | | 9 | 1.9 × 10 ⁻³ | 2.3×10^{-4} | 1.7×10^{-4} | n.d. | 10 | 3.2×10^{-3} | 4.6×10^{-4} | 4.1×10^{-4} | n.d. | 11 | 4.1×10^{-3} | 3.1×10^{-4} | 1.7×10^{-4} | n.d. | n.d. | n.d, | n.d. | 1.0×10^{-5} | n.d. | n.d. | TABLE B29 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.9 99 Mo Batch 307-1B | | · · · · · · · · · · · · · · · · · · · | | Radio | nuclidic l | Purity (as perc | entage of ⁹⁹ⁿ | Tc activity) | | | | |---------------|---------------------------------------|------------------------|------------------------|-------------------|------------------------|--------------------------|----------------------|------------------------|-------------------|--------| | Eluate
No. | 99 _{Mo} | 131 | ¹³² | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 1.4 × 10 ⁻⁴ | 6.0 × 10 ⁻⁵ | 7.5 × 10 ⁻⁴ | n.d. | 1.1 × 10 ⁻⁴ | 3.0×10^{-5} | 4.0×10^{-5} | 2.0×10^{-5} | n.d. | n.d. | | 2 | 1.1×10^{-4} | 1.8×10^{-4} | 3.6×10^{-3} | n.d. | 2.8×10^{-4} | 5.0 × 10 ⁻⁵ | n.d. | 2.0×10^{-5} | n.d. | n.d. | | 3 | 8.0 × 10 ⁻⁵ | 3.9×10^{-4} | 9.4×10^{-3} | n.d. | n.d. | 4.0×10^{-5} | n.d. | 2.0×10^{-5} | n.d. | n.d. | | 4 | 1.1 × 10 ⁻⁴ | 4.2×10^{-4} | 1.0×10^{-2} | n.d. | n.d. | n.d. | n.d. | 3.0×10^{-5} | n.d. | n.d. | | 5 | 9.0×10^{-5} | 6.3×10^{-4} | 1.4×10^{-2} | n.d. | n.d. | n.d. | n.đ. | 6.0×10^{-5} | n.d. | n.d. | | 6 | 2.0×10^{-4} | | 1.2×10^{-2} | n.d. | n.đ. | n.d. | n.d. | 1.5×10^{-4} | n.d. | n.d. | | 7 | 1.0 × 10 ⁻⁴ | | 9.4×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.9×10^{-4} | n.d. | n.d. | | 8 | 9.0×10^{-5} | 5.0×10^{-4} | 1.2×10^{-2} | n.d. | n.d. | n.d. | n.d. | 3.4×10^{-4} | n.d. | n.d. | | 9 | 1.0×10^{-4} | | 1.5×10^{-2} | n.d. | n.d. | n.d. | n.d. | 3.5×10^{-4} | n.d. | n.d. | | 10 | 1.2 × 10 ⁻⁴ | | _ | n.d. | n.d. | n.d. | n.d. | 4.5 × 10 ⁻⁴ | n.d. | n.d. | | 11 | 2.2×10^{-4} | 1.8×10^{-4} | | n.d. | n.d. | n.d. | n.d. | 3.3 × 10 ⁻⁴ | n.d. | n.d. | TABLE B30 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.10 99Mo Batch 307-1B | | | | | Radionuc | lidic Purity (as | percenta | ge of ^{99m} Tc a | ectivity) | | | |---------------|------------------------|------------------------|------------------------|-------------------|------------------------|-------------------|---------------------------|------------------------|------------------------|--| | Eluate
No. | 99 _{Mo} | 131 _[| 132 | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 3.2 × 10 ⁻³ | 2.0 × 10 ⁻⁵ | 1.5 × 10 ⁻⁴ | n.d. | 1.1 × 10 ⁻⁴ | n.d. | 2.9×10^{-4} | 2.0×10^{-5} | 4.0 × 10 ⁻⁶ | 2.0 × 10 ⁻⁶ 95Zr | | 2 | 3.2×10^{-3} | 1.0×10^{-5} | 2.6×10^{-4} | n.d. | 1.3×10^{-4} | n.d. | 2.0×10^{-4} | 1.0 × 10 ⁻⁵ | n.d. | 1.0 × 10 ^{–6} ⁹⁵ Zr | | 3 | 3.4×10^{-3} | | | n.d. | 1.1×10^{-4} | n.d. | 2.0×10^{-4} | 1.0 × 10 ⁻⁵ | 5.0×10^{-6} | 1.0 × 10 ⁻⁶ 9 ⁵ Zr | | 4 | 7.2 × 10 ⁻³ | 9.0×10^{-5} | | n.d. | 8.0 × 10 ⁻⁵ | n.d. | 4.8 × 10 ⁴ | 2.0 × 10 ⁻⁵ | n.d. | 3.0×10^{-6} 95 Zr | | 5 | 3.2×10^{-3} | 1.4×10^{-4} | 1.4×10^{-3} | n.d. | n.d. | n.d. | 1.2×10^{-4} | 1.0×10^{-5} | n.d. | n.d. | | 6 | 3.2 × 10 ^{−3} | 1.3×10^{-4} | 7.2×10^{-4} | n.d. | n.d. | n.d. | 1.2×10^{-4} | 2.0×10^{-5} | 3.0×10^{-6} | n.d. | | 7 | 3.7×10^{-3} | 1.9×10^{-4} | 9.1×10^{-4} | n.d. | n.d. | n.d. | 1.7×10^{-4} | 2.0×10^{-5} | n.d. | 4.0×10^{-6} 95Zr | | 8 | 5.2 × 10 ⁻³ | 7.3×10^{-4} | 4.7×10^{-3} | n.d. | n.đ. | n.d. | 1.7×10^{-4} | 4.0 × 10 ⁻⁵ | n.d. | 1.0 × 10 ⁻⁵ 140La | | 9 | 5.7 × 10 ⁻³ | 1.0 × 10 ^{−3} | 5.2 × 10 ⁻³ | n.d. | n.d. | n.d. | 1.2×10^{-4} | 7.0×10^{-5} | n.d. | 1.0 × 10 ⁻⁶ 95Nb | | 10 | 5.5 × 10 ⁻³ | • | | n.d. | n.d. | n.d. | 1.2 × 10 ⁻⁴ | 1.0 × 10 ⁻⁴ | n.d. | 4.0×10^{-6} 95 Zr
2.0×10^{-6} 95 Nb | | 11 | 2.3 × 10 ⁻³ | 7.1 × 10 ⁻⁵ | 5.7 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 1.5 × 10 ⁻⁴ | n.d. | $3.0 \times 10^{-6} {}^{95}$ Zr
$3.0 \times 10^{-6} {}^{95}$ Zr | TABLE B31 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.11 99Mo Batch 307-2A | | | | F | Radionuc | idic Purity (as | percenta | ge of ^{99m} Tc a | ctivity) | | | |---------------|------------------------|------------------------|------------------------|-------------------|------------------------|-------------------|---------------------------|------------------------|------------------------|------------------------------| | Eluate
No. | ⁹⁹ Mo | 131 | ¹³² | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 3.1 × 10 ⁻⁴ | 3.0 × 10 ⁻⁵ | 3.9 × 10 ⁻⁴ | n.d. | 7.0 × 10 ⁻⁵ | n.d. | 7.0×10^{-5} | 1.0 × 10 ⁻⁵ | 2.0 × 10 ⁻⁶ | n.d. | | 2 | 2.9×10^{-4} | 2.0×10^{-5} | 5.0×10^{-4} | n.d. | 5.0×10^{-5} | n.d. | 8.0×10^{-5} | 1.0×10^{-5} | n.d. | n.d. | | 3 | 3.1×10^{-4} | 5.0×10^{-5} | 1.1 × 10 ⁻³ | n.d. | n.d. | n.d. | 8.0×10^{-5} | 1.0×10^{-5} | n.d. | n.d. | | 4 | 4.0×10^{-4} | 7.0 × 10 ⁻⁵ | 1.6×10^{-3} | n.d. | n.d. | n.d. | 9.0×10^{-5} | 1.0×10^{-5} | n.d. | 1.0 × 10 ^{-6 95} Ni | | 5 | 4.7×10^{-4} | 1.1×10^{-4} | 2.6×10^{-3} | n.d. | n.d. | n.d. | 7.0×10^{-5} | 1.0 × 10 ⁻⁵ | n.d. | n.d. | | 6 | 4.9×10^{-4} | 2.2×10^{-4} | 2.8×10^{-3} | n.d. | n.d. | n.d. | n.d. | 3.0×10^{-4} | n.d. | 3.0×10^{-6} | | 7 | 5.6×10^{-4} | 3.6×10^{-4} | 3.8×10^{-3} | n.d. | n.d. | n.d. | n.d. | 3.0×10^{-5} | n.d. | n.d. | | 8 | 5.2×10^{-4} | 2.9×10^{-4} | 4.6×10^{-3} | n.d. | n.d. | n.d. | n.d. | 4.0×10^{-5} | n.d. | n.d. | | 9 | 5.8×10^{-4} | 3.9×10^{-4} | 5.1×10^{-3} | n.d. | n.d. | n.d, | n.d. | 4.0×10^{-5} | n.d. | n.d. | | 10 | -7.2×10^{-4} | 3.5×10^{-4} | 6.2 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 5.0 × 10 ⁻⁵ | n.d. | n.d. | | 11 | 8.5×10^{-4} | 3.8×10^{-4} | 6.2×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.4×10^{-4} | n.d. | n.d, | TABLE B32 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.12 99Mo Batch 307-2A | | | | Radionuclidi | c Purity (a | as percentage | of ^{99m} To | activity) | | | | |---------------|------------------------|----------------------|------------------------|-------------------|------------------------|----------------------|-------------------|-------------------|-------------------|--------| | Eluate
No. | 99
Mo | 131 | ¹³² | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 1.0 × 10 ⁻² | n.d. | 1.9 × 10 ⁻⁴ | n.d. | 5.0 × 10 ⁻⁵ | n.d. | n.d. | n.d. | n.d. | n.d. | | 2 | 1.2×10^{-2} | n.d. | 2.1×10^{-4} | n.d. | n.d. | n.d. | n.d. | n.d. | n.ď. | n.d. | | 3 | 1.2 × 10 ⁻² | n.đ. | 3.0×10^{-4} | n.d. | n.d. | n.d. | n.d. | n.d. | n.đ. | n.d. | | 4 | 1.1×10^{-2} | n.d. | 2.0×10^{-4} | n.d. | n.d, | n.d. | n.d. | n.d. | n.d. | n.d. | | 5 | 1.3×10^{-2} | n.d. | 6 | 1.4 × 10 ⁻² | n.d. | 3.0×10^{-4} | n.d. | n.đ. | n.d. | n.d. | n.d. | n.d. | n.d. | | 7 | 1.6×10^{-2} | n.d. | 9.8×10^{-4} | n.d. | 8 | 2.0×10^{-2} | n.d. | 9.0×10^{-4} | n.d. | 9 | 2.0×10^{-2} | n.d. | 8.8×10^{-4} | n.d, | n.d. | n.d. | ก.d. | n.d. | n.d. | n.d. | | 10 | 2.4×10^{-2} | 1.5×10^{-4} | 1.2×10^{-3} | n.d. | 11 | 2.7×10^{-2} | 1.5×10^{-4} | 1.0×10^{-3} | n.d. | n.d. | n.d. | n.d. | n.d. | n.d, | n.d. | ## TABLE B33 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.13 99Mo Batch 307-2B | | Radionuclidic Purity (as percentage of ^{99m} Tc activity) | | | | | | | | | | | | |---------------|--|------------------------|------------------------|---------------------|------------------------|------------------------|----------------------|------------------------|----------------------|-----------------------------|--|--| | Eluate
No. | ⁹⁹ Mo | 131 | ¹³² | . ¹³² Тө | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | | | 1 | 4.3 × 10 ⁻⁴ | 2.0 × 10 ⁻⁵ | 3.6 × 10 ⁻⁴ | n.d. | 2.9 × 10 ⁻⁴ | 7.0×10^{-5} | 6.0×10^{-5} | 2.0 × 10 ⁻⁵ | n.d. | n.d. | | | | 2. | 2.4×10^{-4} | 6.0×10^{-5} | 1.6×10^{-3} | n.d. | $2.9
\times 10^{-4}$ | n.d. | n.d. | 1.0×10^{-5} | 2.0×10^{-6} | n.d. | | | | 3 | 3.1×10^{-4} | 8.0 × 10 ⁻⁵ | 1.5×10^{-3} | n.d. | 2.2×10^{-4} | 5.0 × 10 ⁻⁵ | 4.0×10^{-4} | 2.0×10^{-5} | n.d. | 1.0×10^{-6} 95 N | | | | ļ | 3.5×10^{-4} | 1.2×10^{-4} | 2.0×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.d. | n.d. | | | | i | 3.3×10^{-4} | 1.7×10^{-4} | 3.4×10^{-3} | n.d. | n.d. | n.d. | n.d. | 3.0×10^{-5} | n.d. | n.d. | | | | 3 | 7.8×10^{-4} | 2.2×10^{-4} | 2.7×10^{-3} | n.d. | n.d. | n.d. | n.d. | 8.0×10^{-5} | n.d. | n.d. | | | | 7 | 3.6×10^{-4} | 3.7×10^{-4} | 4.8×10^{-3} | n.d. | n.d. | n.d. | n.d. | 8.0 × 10 ⁻⁵ | n.d. | n.d. | | | | 3 | 3.6×10^{-4} | 2.5×10^{-4} | 4.5×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-4} | n.d. | n.d. | | | | 9 | 5.4 × 10 ⁻⁴ | 2.4×10^{-4} | 6.0×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.4×10^{-4} | n.d. | n.d. | | | | 10 | 2.3 × 10 ⁻⁴ | 1.6 × 10 ⁴ | 6.7 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 1.4 × 10 ⁻⁴ | n.d. | n.d. | | | | 11: | 2.9×10^{-4} | 3.0×10^{-4} | 6.7×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.7×10^{-4} | n.d. | n.d. | | | n.d. not detected. TABLE B34 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.14 99Mo Batch 307-2B | Eluate | Radionuclidic Purity (as percentage of ^{99m} Tc activity) | | | | | | | | | | | | | |--------|--|------------------------|------------------------|-------------------|------------------------|-------------------|------------------------|------------------------|------------------------|---|--|--|--| | No. | ⁹⁹ Mo | 131 | ¹³² | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | | | | 1 | 9.9 × 10 ⁻⁴ | 1.0 × 10 ⁻⁵ | 1.5 × 10 ⁻⁴ | n.d. | 1.0 × 10 ⁻⁴ | n.d. | 3.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁶ 95Zr | | | | | 2 | 7.9 × 10 ⁻⁴ | 1.0 × 10 ⁻⁵ | 2.5 × 10 ⁻⁴ | n.d. | 8.0 × 10 ⁻⁵ | n.d. | 2.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | $1.0 \times 10^{-6} {}^{95}$ N
$1.0 \times 10^{-6} {}^{95}$ Zr | | | | | 3 | 9.6 × 10 ⁻⁴ | 5.0 × 10 ⁻⁶ | 2.8 × 10 ⁻⁴ | n.d. | 5.0 × 10 ⁻⁵ | n.d. | 4.0 × 10 ⁻⁵ | 2.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | $1.0 \times 10^{-6} \frac{95}{95}$ N
$1.0 \times 10^{-6} \frac{95}{95}$ Zr | | | | | 4 | 1.1 × 10 ⁻³ | 1.0 × 10 ⁻⁵ | 2.8 × 10 ⁻⁴ | n.d. | 3.0 × 10 ⁻⁵ | n.d. | 3.0 × 10 ⁻⁵ | 3.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁶ ⁹⁵ N
1.0 × 10 ⁻⁶ ⁹⁵ N | | | | | 5 | 1.2 × 10 ⁻³ | 2.0 × 10 ⁻⁵ | 3.9 × 10 ⁻⁴ | n.d. | 3.0 × 10 ⁻⁵ | n.d. | n.d. | 2.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | $2.0 \times 10^{-6} {}^{95}$ Z $_{1.0} \times 10^{-6} {}^{95}$ N | | | | | 6 | 1.3 × 10 ⁻³ | 3.0 × 10 ⁻⁵ | 3.7×10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 6.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | $2.0 \times 10^{-6} {}^{95}$ Zr $2.0 \times 10^{-6} {}^{95}$ N | | | | | 7 | 1.2 × 10 ⁻³ | 6.0 × 10 ⁻⁵ | 6.8 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 4.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | $3.0 \times 10^{-6} $ 95 Zc $2.0 \times 10^{-6} $ 95 N | | | | | 3 | 1.6 × 10 ⁻³ | 1.9 × 10 ⁻⁴ | 1.3 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 5.0 × 10 ⁻⁵ | 5.0 × 10 ⁻⁶ | 3.0×10^{-6} 95 Z 2.0×10^{-6} 95 N | | | | | • | 1.9 × 10 ⁻³ | 3.6 × 10 ⁻⁴ | 1.9 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 5.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | 2.0×10^{-6} 95 Z 2.0×10^{-6} 95 N | | | | | 10 | 2.0 × 10 ⁻³ | 4.5 × 10 ⁻⁴ | 2.1 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 9.0 × 10 ⁻⁵ | n.d. | 3.0×10^{-6} 95 Z 6 5.0×10^{-6} 95 N | | | | | 11 | 2.1 × 10 ⁻³ | 7.3 × 10 ⁻⁴ | 2.3 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 2.7 × 10 ⁻⁴ | n.d. | $1.0 \times 10^{-5} {}^{95}$ Zi
$1.0 \times 10^{-5} {}^{95}$ N
$1.0 \times 10^{-5} {}^{95}$ Zi | | | | TABLE B35 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.15 99Mo Batch 307-3A | | Radionuclidic Purity (as percentage of ^{99m} Tc activity) | | | | | | | | | | | | | |---------------|--|------------------------|------------------------|-------------------|------------------------|------------------------|------------------------|------------------------|-------------------|--------|--|--|--| | Eluate
No. | ⁹⁹ Mo | 131 | 132 | ¹³² Тө | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | | | | 1 | 1.9 × 10 ⁻⁴ | 6.0 × 10 ⁻⁵ | 4.1 × 10 ⁻⁴ | n.d. | 1.3 × 10 ⁻⁴ | 4.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | 3.0 × 10 ⁻⁵ | n.d. | n.d. | | | | | 2 | 1.6×10^{-4} | 1.7×10^{-4} | 3.1×10^{-3} | n.d. | n.d. | 4.0×10^{-5} | n.d. | 4.0×10^{-5} | n.d. | n.d. | | | | | 3 | 1.6×10^{-4} | 2.1×10^{-4} | 6.4×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁴ | n.d. | n.d. | | | | | 4 | 2.0×10^{-4} | 1.3×10^{-4} | 3.4×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.9×10^{-4} | n.d. | n.d. | | | | | 5 | 1.6 × 10 ⁴ | 1.8×10^{-4} | 6.2×10^{-3} | n.d. | n.d. | n.d, | ก.d. | 4.2×10^{-4} | n.d. | n.d. | | | | | 6 | 2.4×10^{-4} | 1.2×10^{-4} | 3.0×10^{-3} | n.d. | n.d. | n.d, | n.d. | 1.8×10^{-3} | n.d. | n.d. | | | | | 7 | 1.9×10^{-4} | 1.6×10^{-4} | 4.3×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.5 × 10 ⁻³ | n.d. | n.d. | | | | | 8 | 2.0×10^{-4} | 1.1×10^{-4} | 4.5×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.7 × 10 ^{–3} | n.d. | n.d. | | | | | 9 | 2.2×10^{-4} | 1.3×10^{-4} | 5.2×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-3} | n.ď. | n.d. | | | | | 10 | 1.6 × 10 ⁻⁴ | 1.0×10^{-4} | | n.d. | n.d. | n.d. | n.d. | 1.9 × 10 ⁻³ | n.d. | n.d. | | | | | 11 | 1.8×10^{-4} | n.d. | 4.8×10^{-3} | n.d. | n.d. | n.d. | n.d. | 4.0×10^{-3} | n.d. | n.d. | | | | TABLE B36 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.16 99Mo Batch 307-3A | | Radionuclidic Purity (as percentage of ^{99m} Tc activity) | | | | | | | | | | | | | |---------------|--|------------------------|------------------------|-------------------|------------------------|-------------------|------------------------|------------------------|------------------------|--|--|--|--| | Eluate
No. | ⁹⁹ Mo | ¹³¹ | 132 | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | 103 _{Ru} | ¹²⁷ Sb | Others | | | | | 1 | 5.8 × 10 ⁻⁴ | 1.0×10^{-5} | 1.4 × 10 ⁻⁴ | n.d. | 3.0 × 10 ⁻⁵ | n.d. | n.d. | 1.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁶ | 5.0 × 10 ⁻⁷ 95 _{Nb} | | | | | 2 | 6.4 × 10 ⁻⁴ | 1.0 × 10 ⁻⁵ | 1.5 × 10 ⁻⁴ | n.d. | 3.0 × 10 ⁻⁵ | n.d. | 3.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | n.d. | $3.0 \times 10^{-7} {}^{95}$ Zr
$1.0 \times 10^{-6} {}^{95}$ Nb | | | | | 3 | 6.0 × 10 ⁻⁴ | 1.0 × 10 ⁻⁵ | 1.8 × 10 ⁻⁴ | n.d. | 2.0 × 10 ⁻⁵ | n.d. | 4.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | n.d. | 1.0 × 10 ⁻⁶ ⁹⁵ Zr
1.0 × 10 ⁻⁶ ⁹⁵ Nb | | | | | 4 | 6.4 × 10 ⁻⁴ | | 2.2 × 10 ⁻⁴ | n.d. | 2.0 × 10 ⁻⁵ | n.d. | | 1.0 × 10 ⁻⁵ | n.d. | $1.0 \times 10^{-6} {}^{95}$ Zr $5.0 \times 10^{-7} {}^{95}$ Nb | | | | | 5 | 6.8×10^{-4} | | 2.5×10^{-4} | n.d. | 2.0×10^{-5} | n.d. | 7.0×10^{-5} | 1.0×10^{-5} | n.d. | 3.0 × 10 ⁻⁷ 95Nb | | | | | 6 | 7.2×10^{-4} | 2.0×10^{-5} | 2.4×10^{-4} | n.d. | n.d. | n.d. | 6.0 × 10 ⁻⁵ | 2.0×10^{-5} | n.d. | $1.5 \times 10^{-6} {}^{95}$ Nb $5.0 \times 10^{-7} {}^{95}$ Zr | | | | | 7 | 7.8 × 10 ⁻⁴ | | | n.d. | n.d. | n.d. | 4.0 × 10 ⁻⁵ | 2.0 × 10 ⁻⁵ | n.d. | 7.0 × 10 ⁻⁷ 95Nb | | | | | 8 | 1.0 × 10 ⁻³ | 1.6 × 10 ⁻⁴ | 1.1 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 4.0 × 10 ⁻⁵ | n.đ. | 3.0×10^{-6} 95Nb | | | | | 9 | 8.5 × 10 ⁻⁴ | 3.9 × 10 ⁻⁴ | 1.5×10^{-3} | n.ď. | n.d. | n.d. | n.d. | 3.0×10^{-5} | n.d. | $2.0 \times 10^{-7} \frac{95}{2}$ r
$1.0 \times 10^{-7} \frac{95}{9}$ Nb | | | | | 10 | 1.0×10^{-3} | 4.8×10^{-4} | 1.6×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.d. | n.d. | | | | | 11 | 1.1×10^{-3} | 5.4×10^{-4} | 1.5×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.4×10^{-4} | n.d. | 3.0×10^{-6} 95Nb | | | | TABLE B37 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.17 99Mo Batch 307-3B | | Radionuclidic Purity (as percentage of ^{99m} Tc activity) | | | | | | | | | | | | | |---------------|--|------------------------|------------------------|-------------------|------------------------|------------------------|------------------------|------------------------|-------------------|---|--|--|--| | Eluate
No. | ⁹⁹ Mo | 131 | ¹³² | ¹³² Тө | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | | | | 1 | 1.4 × 10 ⁻⁴ | 8.0 × 10 ⁻⁵ | 1.3 × 10 ⁻⁴ | n.d. | 2.4×10^{-5} | 2.0 × 10 ⁴ | 2.0 × 10 ⁻⁵ | 4.0 × 10 ⁻⁶ | n.d. | 5.5 × 10 ⁻⁷ ⁹⁵ Zr | | | | | 2 | 1.0×10^{-4} | 4.0 × 10 ⁵ | 1.4×10^{-4} | n.d. | 7.0×10^{-5} | 2.0 × 10 ^{−5} | 2.0×10^{-5} | 6.0 × 10 ^{–6} | n.d. | 2.0 × 10 ⁻⁶ 95Zr | | | | | 3 | 8.0 × 10 ⁻⁵ | 7.0 × 10 ⁻⁵ | 4.3×10^{-4} | n.d. | 8.0 × 10 ⁻⁵ | n.d. | n.d. | 3.0×10^{-6} | n.d. | n.d. | | | | | 4 | 1.0×10^{-4} | 1.6×10^{-4} | 7.9×10^{-4} | n.d. | 1.0×10^{-4} | 3.0×10^{-5} | n.d. | 4.0×10^{-6} | n.d. | n.d. | | | | | 5 | 9.0×10^{-5} | 2.1×10^{-4} | 1.0×10^{-3} | n.d. | n.d. | 3.0×10^{-5} | n.d. | 1.0×10^{-5} | n.đ. | n.d. | | |
| | 6 | 7.0×10^{-5} | 2.5×10^{-4} | 5.5 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.d. | n.d. | | | | | 7 | n.d. | 3.4×10^{-4} | 1.0×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | n.d. | n.d. | | | | | 8 | 8.0×10^{-5} | 3.3×10^{-4} | 1.6×10^{-3} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | n.d. | n.d. | | | | | 9 | 9.0×10^{-5} | 3.8×10^{-4} | 1.9×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.0 × 10 ⁻⁵ | n.đ. | n.d. | | | | | 10 | 1.6 × 10 ⁻⁴ | 3.9 × 10 ⁻⁴ | 2.3×10^{-3} | n.d. | n.d. | n.d. | n.d. | 2.0 × 10 ⁻⁵ | n.d. | n.d. | | | | | 11 | n.d. | 4.6×10^{-4} | 2.0×10^{-3} | n.d. | n.d. | n.d. | n.d. | 6.0×10^{-5} | n.d. | n.d. | | | | TABLE B38 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.18 99Mo Batch 307-3B | | Radionuclidic Purity (as percentage of ^{99m} Tc activity) | | | | | | | | | | | | |---------------|--|------------------------|------------------------|-------------------|------------------------|-------------------|----------------------|------------------------|------------------------|--|--|--| | Eluate
No. | ⁹⁹ Mo | 131 | ¹³² | ¹³² Te | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | | | 1 | 3.5 × 10 ⁻⁴ | 2.0×10^{-5} | 8.0 × 10 ⁻⁵ | n.d. | 6.0 × 10 ⁻⁵ | n.d. | n.d. | 3.0 × 10 ⁻⁶ | 8.0 × 10 ⁻⁷ | 5.0 × 10 ⁻⁷ ⁹⁵ Nb
1.0 × 10 ⁻⁷ ⁹⁵ Zr | | | | 2 | 3.1 × 10 ⁻⁴ | 1.0×10^{-5} | 8.0 × 10 ⁻⁵ | n.d. | 3.0 × 10 ⁻⁵ | n.d. | n.d. | 2.0 × 10 ⁻⁶ | n.d. | 2.0×10^{-7} 95Nb
4.0×10^{-7} 95Zr | | | | 3 | 3.2×10^{-4} | 1.0×10^{-5} | 1.4×10^{-4} | n.d. | 4.0×10^{-5} | n.d, | n.d, | 1.0×10^{-6} | n.d. | n.d. | | | | 4 | 2.8×10^{-4} | 1.0×10^{-5} | 1.8×10^{-4} | n.d. | 2.0×10^{-5} | n.d. | n.d. | 2.0×10^{-6} | 8.0×10^{-7} | 2.0×10^{-7} 95 Nb | | | | 5 | 2.8×10^{-4} | 2.0×10^{-5} | 1.1×10^{-3} | n.d. | n.d. | n.d. | 1.0×10^{-5} | 3.0×10^{-6} | n.d. | 4.0×10^{-7} 95 Zr | | | | 6 | 2.6 × 10 ⁻⁴ | 1.0×10^{-5} | 1.4×10^{-4} | n.d. | n.d. | n.d. | n.d. | 5.0×10^{-6} | n.d. | 1.0 × 10 ⁻⁶ 95Zr | | | | 7 | 3.0×10^{-4} | 3.0 × 10 ⁻⁵ | 2.9 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 4.0 × 10 ⁻⁶ | n.d. | 1.0 × 10 ⁻⁶ ⁹⁵ Nb
1.0 × 10 ⁻⁶ ⁹⁵ Zr | | | | 8 | 2.8×10^{-4} | 6.0×10^{-5} | 3.2×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | n.d. | 1.0 × 10 ⁻⁶ 95Nb | | | | 9 | 3.0×10^{-4} | 7.0×10^{-5} | 4.1×10^{-4} | n.d. | n.d. | n.d. | n.d. | 1.0×10^{-5} | n.d. | 9.0×10^{-7} 95Nb | | | | 10 | 3.2×10^{-4} | 1.6 × 10 ⁻⁵ | 4.9 × 10 ⁻⁴ | n.đ. | n.d. | n.d. | n.d. | 1.0×10^{-5} | n.d. | 1.0 × 10 ⁻⁶ ⁹⁵ Nb
2.0 × 10 ⁻⁶ ⁹⁵ Zr | | | | 11 | 3.2×10^{-4} | 1.5×10^{-5} | 3.6×10^{-4} | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.d. | 7.0×10^{-6} 95Nb | | | TABLE B39 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.19 99Mo Batch 307-4A | Eluate | | | | | | | of ^{99m} Tc acti | | | ······ | |--------|------------------------|------------------------|------------------------|-------------------|------------------------|-------------------|---------------------------|------------------------|-------------------|---| | No. | ⁹⁹ Mo | 131 | 132 _j | ¹³² Тө | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 3.8 × 10 ⁻⁴ | 3.1 × 10 ⁻⁴ | 3.2×10^{-4} | n.d. | 5.0 × 10 ⁻⁵ | n.d. | 6.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | n.d. | 2.0×10^{-6} 95 N 5.0×10^{-6} 95 Z | | 2 | 3.1 × 10 ⁻⁴ | 2.0 × 10 ⁻⁴ | 3.8 × 10 ⁻⁴ | n.d. | n.d. | n.d. | 9.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | n.d. | 2.0×10^{-6} 95 N 1.0×10^{-5} 95 Z | | 3 | 2.9×10^{-4} | 2.2 × 10 ⁻⁴ | 4.7×10^{-4} | n.đ. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.d. | $1.0 \times 10^{-6.95}$ N
$1.0 \times 10^{-5.95}$ Z | | 4 | 2.3×10^{-4} | 3.9 × 10 ⁻⁴ | 6.7 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.d. | 1.0×10^{-6} 95 N 5.0×10^{-6} 95 Z | | 5 | 2.6 × 10 ⁻⁴ | 6.4 × 10 ⁻⁴ | 8.9 × 10 ⁻⁴ | n.d. | n.d. | n.d. | 8.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | n.d. | 3.0 × 10 ⁻⁶ 95 | | 6 | 2.9 × 10 ⁻⁴ | 1.2 × 10 ⁻³ | 9.9 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 3.0 × 10 ⁻⁵ | n.d. | $1.0 \times 10^{-6} {}^{95}$ Z
$1.0 \times 10^{-5} {}^{95}$ N
$2.0 \times 10^{-5} {}^{95}$ Z | | 7 | 1.8 × 10 ⁻⁴ | 1.7×10^{-3} | 1.3×10^{-3} | n.d. | n.d. | n.d. | n.d. | 3.0 × 10 ⁻⁵ | n.d. | 1.0×10^{-5} 95 1.0×10^{-5} 95 2 | | 8 | 1.8×10^{-4} | 1.7×10^{-3} | 1.6 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 2.0×10^{-5} | n.d. | 1.0×10^{-5} 95 1.0×10^{-5} 95 2.0×10^{-5} 95 2.0×10^{-5} | | 9 | n.d. | 1.8 × 10 ⁻³ | 2.0 × 10 ⁻³ | n.d. | n.ď. | n.d. | n.d. | 2.0 × 10 ⁻⁵ | n.d. | 1.0×10^{-5} 95 2.0×10^{-5} 95 2.0×10^{-5} 95 2.0×10^{-5} | | 10 | 2.5 × 10 ⁻⁴ | 1.6 × 10 ⁻³ | 2.0 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 3.0×10^{-5} | n.d. | $1.0 \times 10^{-5} {}^{95}$ $4.0 \times 10^{-5} {}^{95}$ | | 11 | 2.4 × 10 ⁻⁴ | 1.9 × 10 ⁻³ | 2.2 × 10 ⁻³ | n.d. | n.d. | n.d. | n.d. | 8.0×10^{-5} | n.d. | 3.0×10^{-5} 95;
5.0×10^{-5} 95; | ## TABLE B40 RADIONUCLIDIC PURITY ANALYSIS OF GENERATOR ELUATES Generator No.20 99Mo Batch 307-4A | Fl | | | Ra | dionuclid | c Purity (as p | ercentage | of ^{99m} Tc acti | vity) | | | |---------------|------------------------|------------------------|------------------------|-------------------|------------------------|-------------------|---------------------------|------------------------|-------------------|---| | Eluate
No. | 99 _{Mo} | 131 | 132 | ¹³² Тө | ¹¹² Ag | ¹¹² Pd | ²³⁹ Np | ¹⁰³ Ru | ¹²⁷ Sb | Others | | 1 | 1.1 × 10 ⁻³ | 1.2 × 10 ⁻³ | 3.0 × 10 ⁻⁵ | n.d. | 2.0 × 10 ⁻⁵ | n.d. | 4.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | n.d. | $1.0 \times 10^{-6} {}^{95}\text{N}$
$4.0 \times 10^{-6} {}^{95}\text{Z}$ | | 2 | 1.2 × 10 ⁻³ | 5.0 × 10 ⁻⁵ | 5.0 × 10 ⁻⁵ | n.d. | 2.0 × 10 ⁻⁵ | n.d. | 5.0 × 10 ⁻⁵ | 4.0 × 10 ⁻⁶ | n.d. | 1.0×10^{-6} 95N
2.0×10^{-6} 95Z | | 3 | 1.1 × 10 ⁻³ | 3.0 × 10 ⁻⁵ | 6.0 × 10 ⁻⁵ | n.d. | 1.0×10^{-5} | n.d. | 5.0 × 10 ⁻⁵ | 4.0 × 10 ⁻⁶ | n.d. | $1.0 \times 10^{-6} ^{95}\text{N}$
$2.0 \times 10^{-6} ^{95}\text{Z}$ | | 4 | 1.1 × 10 ⁻³ | 5.0 × 10 ⁻⁵ | 8.0 × 10 ⁻⁵ | n.d. | n.d. | n.d. | 6.0 × 10 ⁻⁵ | 4.0×10^{-6} | n.d. | 7.0×10^{-7} 95N
2.0×10^{-6} 95Z | | 5 | 2.3×10^{-3} | 1.5×10^{-4} | 1.0 × 10 ⁻⁴ | n.d. | n.d. | n.d. | 1.2×10^{-4} | 1.0×10^{-5} | n.d. | 2.0 × 10 ⁻⁶ 95N | | 6 | 1.1 × 10 ⁻³ | 9.0 × 10 ⁻⁵ | 1.4 × 10 ⁻⁴ | n.d. | n.d. | n.d. | 6.0 × 10 ⁻⁵ | 1.0 × 10 ⁻⁵ | n.d. | $4.0 \times 10^{-6-95}$ Z
$2.0 \times 10^{-6-95}$ N
$4.0 \times 10^{-6-95}$ Z | | 7 | 1.1 × 10 ⁻³ | 2.2×10^{-4} | 2.2 × 10 ⁻⁴ | n.d. | n.d. | n.d. | 4.0×10^{-5} | 1.0 × 10 ⁻⁵ | n.d. | 4.0×10^{-6} 95 N
1.0×10^{-5} 95 Z | | 8 | 1.1 × 10 ⁻³ | 6.6 × 10 ⁻⁴ | 3.3 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.đ. | 1.0×10^{-5} | n.d. | 2.0×10^{-6} 95 N
3.0×10^{-6} 95 Z | | 9 | 1.1 × 10 ⁻³ | 1.2×10^{-3} | 4.5 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.d. | 5.0×10^{-6} 95 N
1.0×10^{-5} 95 Z | | 10 | 1.3 × 10 ⁻³ | 1.8 × 10 ⁻³ | 5.4 × 10 ⁻⁴ | n.d. | n.d. | n.d. | n.d. | 1.0 × 10 ⁻⁵ | n.d. | 5.0×10^{-5} 95 N
1.0×10^{-5} 95 Z | | 11 | 1.1 × 10 ⁻³ | 4.2×10^{-3} | 8.8 × 10 ⁻⁴ | n.d. | n.d. | n.đ. | n.d. | 2.0 × 10 ⁻⁵ | n.d. | 5.0×10^{-5} 95 N
1.0×10^{-5} 95 Z | ### TABLE B41 BARIUM-140 and STRONTIUM-90 CONTAMINATION OF THE ELUATES The 140 Ba content of the 99 Mo feed solutions varied from 'not detectable' to 0.021 per cent: two batches in particular showed very high 140 Ba contents, v/z. 307/1B: 0.021 per cent and 307/2A: 0.014 per cent. It was a matter of conjecture whether ¹⁴⁰Ba in the ⁹⁹Mo could be correlated with the presence of the radiotoxic ⁸⁹Sr and ⁹⁹Sr in the eluates. The work program was therefore extended to include ⁸⁹Sr/⁹⁰Sr measurements on the first eluates of Generators 1-17 and on ⁹⁹Mo batches 307/1B and 307/2A. | SAMPLE | % ⁸⁹ Sr | % ⁹⁰ Sr | |--------------------------|------------------------|------------------------| | ⁹⁹ Mo; 307/1B | < 1 × 10 ⁻⁴ | < 1 × 10 ⁻⁴ | | ⁹⁹ Mo; 307/2A | < 1 × 10 ⁻⁴ | < 1 × 10 ⁻⁴ | | Gen. 1 | < 1 × 10 ⁻⁶ | < 1 × 10 ⁻⁷ | | Gen. 2 | • | н | | Gen. 3 | н | H | | Gen. 4 | н | * | | Gen. 5 | | | | Gen. 6 | • | H | | Gen. 7 | | H | | Gen. 8 | M | * | | Gen. 9 | | | | Gen. 10 | н | n | | Gen. 11 | * | | | Gen. 12 | M | ** | | Gen. 13 | H | # | | Gen. 14 | | н | | Gen. 15 | * | н | | Gen. 16 | H | н | | Gen. 17 | | • | In demonstrating the absence of the radiostrontiums in the 99 Mo solutions and the first eluates of the generators, the above results prove that, despite their chemical similarity, it is not possible to use 140 Ba as a γ -emitting monitor for 90 Sr. TABLE B42 DECONTAMINATION FACTORS FOR NOMINAL 20 GBq ⁹⁹Mo GENERATORS MAJOR IMPURITIES | Generator
Number | Generator
Activity Bq
DF | ⁹⁹ Mo Batch
No. | Max ¹³¹ !
Conc. (8 h)
(%) | ¹³¹
DF | Max ¹⁰² Ru
Conc. (8 h)
(%) | ¹⁰³ Ru
DF | Max ¹³² l
Conc.
(%) | ¹³²
DF | Max ¹²⁷ Sb
Conc.(8 h)
(%) | ¹²⁷ Sb | |---------------------
--------------------------------|-------------------------------|--|------------------------|---|-------------------------|--------------------------------------|------------------------|--|-------------------| | 1 | 22.4 | 306/4A | 3.5 × 10 ⁻⁴ | 3,1 | 5.0 × 10 ⁻⁴ | 65.8 | 3.4 × 10 ⁻³ | 0.82 | | | | 3 | 22.3 | 306/4B | 3.5×10^{-3} | 1.0 | 2.5×10^{-3} | 35.9 | 3.4×10^{-3} | 1.9 | n.d.
2.5 × 10 ⁻⁶ | 60 000 | | 5 | 23.0 | 306/4D | 1.7 × 10 ⁻³ | 0.94 | 6.5×10^{-4} | 83.7 | 1.9×10^{-3} | 2.5 | 1.3 × 10 ⁻⁵ | 13 600 | | 7 | 26.0 | 307/1A | 3.3 × 10 ⁻⁴ | 2.9 | 3.5×10^{-4} | 69.7 | 1.3 × 10 ⁻³ | 0.92 | n.d. | - | | . 9 | 28.0 | 307/1B | 2.5×10^{-3} | 0.38 | 1.0×10^{-3} | 227.0 | 1.7 × 10 ⁻² | 2.4 | n.d. | _ | | 11 | 27.9 | 307/2A | 9.8×10^{-4} | 1.4 | 3.5×10^{-4} | 210.3 | 6.2×10^{-3} | 2.8 | 5 × 10 ⁻⁶ | 29 800 | | 13 | 22.4 | 307/2B | 9.3×10^{-4} | 0.54 | 6.8×10^{-4} | 71.9 | 6.7×10^{-3} | 1.5 | 5.0 × 10 ⁻⁶ | 31 400 | | 15 | 23.0 | 307/3A | 5.3×10^{-4} | 2.1 | 1.0×10^{-2} | 12.2 | 6.4×10^{-3} | 1.9 | n.d. | - | | 17 | 22.0 | 307/3B | 1.2×10^{-3} | 1.1 | 1.5×10^{-4} | 192.7 | 2.3×10^{-3} | 2.7 | n.d. | | | 19 | 23.0 | 307/4A | 4.8×10^{-3} | 2.7 | 2.0×10^{-4} | 290.5 | 2.2×10^{-3} | 1.2 | n.d. | - | | Minimum | | | | | , , | | | | | | | DF | | | 0.38 | | 35.9 | | 0.82 | | 13 60 | 00 | TABLE B43 DECONTAMINATION FACTORS FOR NOMINAL 20 GBq ⁹⁹Mo GENERATORS MINOR IMPURITIES | Generator | Generator | ⁹⁹ Mo Batch | Max ⁹⁵ Zr | ⁹⁵ Zr | Max ⁹⁵ Nb | ⁹⁵ Nb | Max ¹⁴⁰ Ba | ¹⁴⁰ Ba | |-----------|----------------|------------------------|------------------------|------------------|----------------------|------------------|-----------------------|-------------------| | Number | Activity (GBq) | No. | Conc. (8 h)
(%) | DF | Conc. (8 h)
(%) | DF | Conc.(8 h)
(%) | DF | | 1 | 22.4 | 306/4A | n.d. | - | n.d. | - | n.d. | _ | | 3 | 22.3 | 306/4B | n.d. | - | n.d. | - | n.d. | - | | 5 | 23.0 | 306/4C | n.d. | - | n.d. | - | n.d. | - | | 7 | 26.0 | 307/1A | n.d. | - | n.d. | - | n.d. | - | | 9 | 28.0 | 307/1B | n.d. | - | n.d. | - | n.d. | - | | 11 | 27.9 | 307/2A | 7.5×10^{-6} | 800 | 2.5×10^{-6} | 1280 | n.d. | - | | 13 | 22.4 | 307/2B | n.d. | - | 2.5×10^{-6} | - * | n.d. | - | | 15 | 23.0 | 307/3A | n.d. | _ | n.d. | _ | n.d. | _ | | 17 | 22.0 | 307/3B | 5.0 × 10 ⁻⁶ | 2740 | n.d. | | n.d. | - | | 19 | 23.0 | 307/4A | 1.3×10^{-4} | 141 | 7.5×10^{-5} | 94 | n.d. | - | ^{* &}lt;sup>95</sup>Nb not detected in ⁹⁹Mo solution. TABLE B44 DECONTAMINATION FACTORS FOR NOMINAL 150 GBq 99Mo GENERATORS MAJOR IMPURITIES | Generator
Number | Generator
Activity (SBq) | ⁹⁹ Mo Batch
No. | Max ¹³¹ I
Conc. (8 h)
(%) | ¹³¹ I
DF | Max ¹⁰³ Ru
Conc. (8 h)
(%) | ¹⁰³ Ru
DF | Max ¹³² l
Conc.
(%) | ¹³² l
DF | Max ¹²⁷ Sb
Conc. (8 h)
(%) | ¹²⁷ Sb
DF | |---------------------|-----------------------------|-------------------------------|--|------------------------|---|-------------------------|--------------------------------------|------------------------|---|-------------------------| | 2 | 150 | 306/4A | 8.5 × 10 ⁻⁴ | 1.3 | 7.5 × 10 ⁻⁵ | 439 | 7.9 × 10 ⁻⁴ | 3.5 | n.d. | _ | | 4 | 162 | 306/4B | 4.8×10^{-3} | 0.31 | 7.5×10^{-5} | 1196 | 1.8×10^{-3} | 3.7 | 1.3×10^{-5} | 11 540 | | 6 - | 163 | 306/4C | 1.9×10^{-3} | 0.81 | 5.0×10^{-5} | 1088 | 3.7×10^{-4} | 13.0 | 2.5×10^{-5} | 7 080 | | 8 | 177 | 307/1A | 1.2×10^{-3} | 0.80 | 2.5×10^{-5} | 922 | 1.7×10^{-4} | 7.0 | n.d. | - | | 10 | 172 | 307/1B | 3.3×10^{-3} | 0.28 | $3.8 \times 10-4$ | 597 | 5.9×10^{-3} | 6.8 | 1.3 × 10 ^{−5} | 10 850 | | 12 | 164 | 307/2A | 3.8×10^{-4} | 3.7 | n.d. | - | 1.2×10^{-3} | 14.3 | n.d. | - | | 14 | 164.5 | 307/2B | 1.8 × 10 ⁻³ | 0.28 | 6.8×10^{-4} | 72 | 2.3×10^{-3} | 4.3 | 2.5×10^{-5} | 6 280 | | 16 | 138 | 307/3A | 1.4×10^{-3} | 0.79 | 3.5×10^{-3} | 349 | 1.6×10^{-3} | 7.5 | 2.5×10^{-6} | 37 600 | | 18 | 164 | 307/3B | 4.0×10^{-4} | 3.3 | 5.0 × 10 ⁻⁵ | 578 | 1.1×10^{-3} | 5.6 | 2.0×10^{-6} | 28 750 | | 20 | 160 | 307/4A | 1.1×10^{-2} | 1.2 | 5.0×10^{-5} | 658 | 8.8×10^{-4} | 3.2 | n.d. | - | | Min. DF | | | 0.28 | | 72 | | 3.2 | | 6280 |) | ### TABLE B45 DECONTAMINATION FACTORS FOR NOMINAL 150 GBq ⁹⁹Mo GENERATORS MINOR IMPURITIES | Generator
Number | Generator
Activity | ⁹⁹ Mo Batch
(GBq) | Max ⁹⁵ Zr
No.
(%) | ⁹⁵ Zr
Conc. (8 h) | Max ⁹⁵ Nb
DF
(%) | ⁹⁵ Nb
Conc. (8 h) DF | Max ¹⁴⁰ Ba
Conc. (8 h)
(%) | ¹⁴⁰ Ba
DF | |---------------------|-----------------------|---------------------------------|------------------------------------|---------------------------------|-----------------------------------|------------------------------------|---|-------------------------------| | 2 | 150 | 306.4A | n.d. | <u> </u> | n.d. | . | 7.5 × 10 ⁻⁵ | 45 | | 4 | 162 | 306/4B | n.d. | - | n.d. | - | 5.0×10^{-5} | 72 | | 6 | 163 | 306/4C | n.d. | - | n.d. | _ | n.d. | | | 8 | 177 | 307/1A | n.d. | _ | n.d. | - | n.d. | - | | 10 | 172 | 307/1B | 1 × 10 ⁻⁵ | 800 | 2.5×10^{-6} | 1200 | 2.5×10^{-5} | 840 | | 12 | 164 | 307/2A | n.d. | _ | n.d. | - | n.d. | _ | | 14 | 164.5 | 307/2B | 2.5×10^{-5} | _* | 2.5×10^{-5} | _** | n.d. | _ | | 16 | 138 | 307/3A | 2.5×10^{-6} | 3280 | 7.5×10^{-6} | 733 | n.d. | - | | 18 | 164 | 307/3B | —5·×·10 -6 | 2740 | 1.8 × 10 ⁻⁵ | 450 | n.d. | ·· · · · · · <u>- ·</u> · · · | | 20 | 160 | 307/4A | 2.5×10^{-5} | 732 | 2.5×10^{-5} | 732 | n.ď. | _ | $^{^{\}star~95} \rm Zr$ not detected in $^{99} \rm Mo$; $^{\star\star~95} \rm Nb$ not detected in $^{99} \rm Mo$. ### APPENDIX C HALF-LIVES OF RADIONUCLIDES | Isotope | Half-life | |-------------------|-----------| | ^{99m} Tc | 6.02 h | | ⁹⁹ Mo | 66.02 h | | 131 | 8.04 d | | 132 | 2.29 h | | ¹³² Te | 78 h | | ¹²⁷ Sb | 3.80 d | | ⁹⁵ Zr | 3.50 d | | ⁹⁵ Nb | 64.0 d | | ¹⁴⁰ Ba | 12.79 d | | | | | | | | | | |--|--|--|--|-------------| |