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ABSTRACT

The theories of extrusion are examined; considerable limitations exist in the
analysis of extrusion conditions using either the semi—empirical approach, which is
based on the assumption of homogeneous straining, or the slip—line approach.

More information is required on the basic extrusion parameters such as yield
stress and friction coefficient and on the variation of extrusion conditions with tooling
geometry., '
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1. INTRODUCTION

This report is one of a series dealing with experiments on the extrusion of beryllium; the
work was done at the Research Establishment of the ‘Australian Atomic Energy Commission as
part of aprogramme to investigate the suitability of beryllium as a material for application in
high temperature gas—cooled reactor systems, . ' o o

The major objectives were:

(i) To develop a satisfactory technique for the extrusion of béryllium metal which
was required for related projects including irradiation testing (Hickman and
Stevens 1963} and chemical studies (Draycott et al. 1961)._

(ii) To determine the mechanical properties of beryllium metal and the variation
of these properties with extrusion conditions.

(iii} To extend the technique to the tandem and co—extrusion of (UTh)Be 4 3—beryllium
dispersions clad in beryllium, such as would be suitable for H.T.G.C.R. fuel
elements and to determine the limitations of the extrusion technique in relation
to this aim.

This report presents a survey of the theories of extrusion against which later work may
be assessed. :

2. THEORIES OF EXTRUSION OF METALS

2,1 Semi-empirical Relationships

The essential features of the extrusion process are shown in Figure 1. The billet is held
in a container and a compressive load is applied by the ram to force the metal through the die. In
the direct method the billet moves relative to the container and in the inverted method the die is
forced through the billet with no movement at the billet—container interface. Direct extrusion is
thus characterised by friction at the walls of the container and across the die face; in inverted
extrusion only the latter is present,

If the load required to move the ram is plotted during each extrusjon stroke, curves such
as those given in Figure 2 are obtained, showing for direct extrusjon a gradual fall during the
stroke and for inverted extrusion a reasonably constant load. The reducing load required for
direct extrusion is due to the progressively smaller frictional atea on the container as the billet
is pushed through, The sharp drop in load at D in Figure 2 is due to ‘‘coring’’ as the metal in
the centre of the extrusion pulls away from the face of the ram, and the load is taken over a
smaller billet area. Thereis no unique value for the load in direct extrusion; the load just before
coring, (that is, at the point of mirimum friction), and the mean load have both been used in the
literature. The load in inverted extrusion is usnally quoted as the mean between points C and D
in Figure 2b,

By plotting the load or pressure on the ram as a function of the reduction in area of the
billet, a simple logarithmic relationship of the form:

P = KlogR S o (1.1)
is obtained, where P = aunit p_ressufe on the__'rau;
R = ‘“ratio area of biilet
area of extrusion

K = amaterial constant,

This relationship was confirmed analytically by Siebel and- Fangemeier (1931) and by ~ -
Fink (1874) assuming the strain field to be uniform and ignoring work losses due to ffiction ‘and
redundant straining, that is, strains that are reversed during passage through the die. Their analysis
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was based on the tensile straining of a billet of original length 1, and area a;, to a rod of length
l; and area a,. The work required to produce 81 increase in length of the billet is:

W= aY 81 , (1.2)

where a and ! are the instantaneous dimensionsof the billet and Y is the yield stress in simple
tension. Thus, in strajning the billet from length 1, to 1, the total work W is:

la
W o= J’ aYdl , (1.3)
Ly
and for constancy of velume V = al = constant,
Lo
Hence v = f YV%—I- (1.4)
1q
= YV log 12 (1.5)

The total work is also given by the product of force applied and distance travelled by the ram, that is,

W = Fl , (1.6)
= Pal
= PV (1.7)

and by combiniﬁg (1.5) and (1.7):

Extrusion Pressure = P =Y log,. (-%1) 7 _ {1.8)
1

= Y log, (Z_;) (1.9)

= Y loggR . (1.10)

Substitution of theyield stress Y into equation (1.10) gives values for the extrusion pressure
which are below those observed experimentally even with due allowance for the effect of friction and
strain hardening (Pearson and Parkins 1960), The constant X in Equation 1,1 may thetefore be
identified by the expression:

K = gy
vwhere S is a dimensionless constant,

Equation 1,10 further predicts that at zero reduction no load is required and this is consistent
with the model of simply pushing abillet through aparallel smooth container. If any small finite
reduction is taken however, some volume of the material must be stressed to the yield point and a
relatively large increase in pressure is noted. The analysis of Siebel and Fangemeier has no lower
limit on validity bur slip line solutions propesed by Hill suggest that below a reduction ratio of two,
the pressure is proportional to the reduction, rather than its logarithm (Hill 1948), These soluticns
are discussed further in Section 1.2,

A further criticism of Equation 1.10 is that no allowance is made for the effects of friction
across the die face ptesent in both direct and inverted extrusion, and the fact that these frictional
conditions are determined by the geometry of the tooling as well as the efficiency of lubrication,
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Johason (1956 a) proposed amodification of Equation 1,10 to overcome some of the se
criticisms; thisis of the form:

2= a+b log R I ; (1.11)
Y

where a and b are constants and Y is the yield stress effective at the appfopriate strain
(2 +b log R) and strain rate, Johnson did not assign any physical meaning to the constants
a and b although he later derived them analytically for a range of plane strain extrusion
conditions, as follows (Johnson 1956 b, 1956 c):

(i) Smooth container and smooth die:

P
v - 0.63 +0.95 logeR' (1.12)

(ii) Rough container and smooth die:

L o 119 +083 108 R (1.13)
Y e

(iii) Smooth container and rough die:

o

¥ = 0.37 + L241og R (1.14)

(iv) Rough container and rough die:

wiro

= 0.63 + 1.28 logoa R . (1.15)

The *‘rough’’ and “*smooth’’ surfaces were defined by the type of slip-line field at the
interface. "A “‘rough’’ surface was one where frictional forces were equivalent to the shear stress
of the metal and movement occurred only by lamellar sheat over the surface; for a ‘‘smooth’’ surface
there were no frictional forces. '

Johnson’s analysis was based on the proportions of the slip—line fields for a square or
shear die extruding in plane strain, and the shape of the plastic field was assumed to be independent
of material properties. From this, the constants a and b should also be independent of the material
but dependent on the geometry of the tooling, the volume of *‘dead metal’’, and the frictional con—
ditions actoss the die and container. In experiments with lubricated extrusion of pure lead, Johnson
(1956 a) confirmed Equation 1,11, but derived values for a and b with a shear die such that:

2

=

= 0.8 + L5log, R . . | (1.16)

The values for Y (uniaxial compressive vield stress) were determined from compression tests at
the mean strain and strain rate applying in extrusion.

Wilcox and Whitton (1958) confirmed the dependence of a and b on tooling geometry by
extruding super—pure aluminium through dies of various shapes and semi—-angles. They derived
values for a and b such that;

It

a 0.9 -1,6cot @ . , (1.17)

and b

1.5 + 0.8 cot & '  (1.18)

where ¢ is the die semi—angle.
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Combining these results with Equation 1.11 gives

P
T = (0.9~ 16cot &) + (1.5 +0.8 cot &) log, R (1.19)

and substituting ¢ = 90°% cot & = 0 in Equation 1.19 gives the relationship for shear dies
extruding aluminjum as:

et

= 0.9 + L5 log R R (1.20)

shich is in remarkable agreement with Equation 1,16 for lead. Further, Equation 1,20 was shown
to be applicable to a range of metals extruded with shear dies.

These empirical relationships are therefore extremely useful in the interpretation of extrusion
behaviour in practice but they cannot be claimed to be complete solutions. In particular the value of
the die angle aloneis not sufficient to define frictional conditions on the die face; the extent of the
dead metal region and thus the die condition depends on the die angle, die friction, and extrusion
ratio as well as the method of extrusion, Both Johnson (1954 a, 1954 b) and Wilcox and Whitton
(1958, 1959) remarked on the importance of dead metal regions and their effects on extrusion load
but the conditions for lubricated slip across the die face or shear through a dead metal region have
not been defined. The interaction of these variables could be of some importance; for example
Johnson(1954 b) and Hill (1950) both noted an optimum die angle (giving a minimum extrusion load)
with high friction coefficients on the die (& = 0.1 — 0.2) but this effect is not apparent with better
lubrication.

The literature refers to the close agreement between the extrusion pressures determined
under plane strain and axial symmetry; the work of Thomsen (1956), Thomsen and Frisch (1958),
and Dodeja and Johnson (1956) is particularly relevant, No theoretical justification has been
put forward for this agreement; as discussed on page 7 , the slip-line conditions for axial
symmetry are insoluble at present,

The valueof Y to be used in the equations is the mean yield stress effective at the strain
and strain rate involved. For ideal plastic metals the yield stress is assumed to be constant and
independent of strain rate; these conditions are approximated with soft metals such as lead where
work hardening isnot present. On the other hand, most metals under normal conditions of extrusion
shrow work hardening or annealing effects and direct determination of Y at the appropriate strains
and strain rates is impossible at present; engineering (logarithmic) strains between 3 and 6 and
strain rates of 10 to 20 seconds™ are commonly encountered. The most successful approach to
date has been the wotk at the British Iron and Steel Research ‘Association Laboratoties by Cook
(1957) using a cam—operated compression machine to achieve high strain rates; unfortunately the
compression test-is not suitable for achieving logarithmic strains above 0.7 (that is, 30 per cent.
reduction in height) because of “*barreling’” of the specimen,

Similarly the mean strain in extrusion (a +b logoR) is an approximation to the actual con-
ditions of varying strain which the metal experiences in the billet'during extrusion. These approx—
imarions are necessary to allowreasonable analytical treatment of extrusion whichis basically a
non—homogeneous deformation process, but the limitations of these assumptions must not be over—

looked,

2,2 Slip-line Solutidns

The work discussed in the previous section was based essentially on the interpretation of
experimental evidence using a simple model of tensile straining, modifying this, as required, to
incorporate the effects of tooling geometry and to account for redundant work, Slip—line solutions
are based on the examination of individual elements as they deform and these solutions incorporate
the effects of unequal strain across the section, tooling geometry, and frictional conditions on the
die and container.

Slip—lines are formally defined as the tangents to the instantaneous directions of maximum
shear stress. Consider, for example, the extrusion of a rectangular billet of metal in plane strain,
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that is, where strainisconfined to two of the principal directions. The slip—line field proposed

by Hill {1948) for 50 per cent. reduction in area through ashear die is given in Figure 3; there are
two families of slip—lines (@ and ') shown asradii and concentric arcs about the peint 0 and the
fieldis symmetrical about the point B orthe axis of the extrusion. The o and'3 slip—lines are
orthogonal, .and since friction is assumed to be absent the B slip—lines from 0 intersect the wall
and axis at 45° thus defining a triangular dead metal region. The limiting ® slip—line AB similarly
defines the extent of the plastic region along the axis of the container. Intermediate slip—lines
may be inserted as required by further subdivision of the net,

In defining the slip—line field, the material is assumed to be “*ideally plastic’’ such that
no work—hardening is experienced and infinite rates of shear are possible. Similarly elastic strains
are ncglected asbeing infinitely smaller than the plastic strains within the field, The plastic
field is therefore bounded by a rigid region which is considered to remain stationary during steady
state extrusion,

If the slip—line field is defined in this way, the stress and velocity thronghout the plastic
region may be calculated by applying the Hencky—Geiringer relationships (Hencky 1923, Geiringer
1937) which in finite form may be written; :

(b~ )+ 2Kk (P - q?aA) =0 on anline (1.21)
(pg — Py ) -2k (pg-¢) =0 ona ,Gliae (1.22)
du —v.dp = 0 onan ¢ line (1.23)
dv +u.d¢p = 0 ona B line (1.24)
and Oy = —p-—ksin qb (1.25)
where:
Par PR = mean compressive stress at positions A, B,
k = maximum shear stress of material
T {Von Mise’s Yield Criterion)
3
or = % (Tresca Yield Criterion),
Y = Uniaxial yield stress,
e _ = Anticlockwise rotation or position of slip—line
considering x—direction positive,
u = velocity component of element along ¢ line,
v = velocity component of element along 3 linel.‘

(Velocities are measured relative to theram or die moving at unit velocity).

Consider first the conditions on OB; the region OBMN is rigid and hence the maximum
stress on the material along OB is the shear stress k; thus p = k on OB, Application of
Equation 1,22 also shows that the stress is uniform along the [ slip—lines OA, OB, OC, OD, OE.
The stress variation along the @ slip~lines is calculated from Equation 1.21 as follows:

On OC shere $p = = -;—7-

e 2 (5= (- F)) - o

Pe = L7% = (1 +—2—)k



On OD where ¢ = 0:
T -
- = N

pp = 2.57k e z)k
On OE where ¢ = + Bﬂ :

Pr = 3.36k = (1 + ﬂ)k

E * 4
On QA where ¢ = 3 -Z-{-— :

p, = 414k = 1+ 7k

Thus the point stresses throughout the region may be calculated, and particularly the conditions
along the limiting slip~line OA. Since the region OAX is considered to be rigid, stresses acting
on OA are acting on the die face OX and these may be calculated from Equation 1,25 as:

o = J—

% pA-ksin2¢A

—-(1 +7)k — k (sin 90)

—(2+m)kor (2 +) k in —x direction,

and the extrusion pressure P, defined asthe extrusion force divided by the original area of
billet, is

P = (____.__2+727)k =(1+%)k

Velocity conditions within the plastic region are determined by integration of Equations
1,23 and 1.24, such thar:

1 . N

u = = —sin fon & slip—line , and (1.26)
A P

v = c¢os & on 8 slip-line .. (1.27)

Equation 1.24 states that the velocity along the 8 slip—lines is constant; similarly for constancy
of volume, a particle moving through the plastic region must accelerate from unit velocity on AB
to a velocity of 2 in the extruded bar. The equation of the trajectory of a point crossing AB at

g, is:

o]

— sin &, , (1.28)

-~ gin &

vhere r =radiusof & slip—line on the trajectory

]
i1

radius of limiting o line AB

Cb-
1l

o location of the point as it crosses AB

a = resultant location of point on radius r .
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The time required for apoint to travel along these trajectories between two points on
radii &y and 8, is:

t = a(é" — sin 6’0) [F (1) — F (8y)] (1.29)
where F(0) = T-ZATS—Q— - [4 coth ™! [(%23 1) tan (%T_gi) ﬂ , (1.30)
jz = sin &

so the velocity conditions within the plastic region are fully defined.

These equations also allow the distortion of a plane surface or grid to be calculated as shown
in Figure 3,

Slip-line solutions to extrusion problems are therefore a means of tracing the strain history
of each point in the billet and therein lies the solution to many features noted in extruded sections;
residual stresses, unequal properties across the bar, and phase changes induced by strain {to mention
a few problems) can be related to the strain history of the billet through slip—line solutions.

However the solutions have limitations, Definition of the geometry of the plastic field for
all extrusion conditions is a complicated procedure; the boundary conditions of velocity and stress
(that is, solutions to Equations 1,21 — 1.24)requite a *‘trial and error’* procedure from which the
correct solution emerges only slowly. The geometry of the fieldis affected by frictional conditions
on the container and the die and by the tooling arrangement and these factors must be known with
some confidence. For “‘real’’ metals, infinite rates of shear, such as postulated on AB in the
example, are impossible and the limiting slip—lines must be replaced by a band more or less
diffuse depending on the strain hardening characteristics of the material. The slip—line patterns
derived theoretically have been confirmed for conditions of plane strain on the limited class of
metals with negligible strain hardening tendencies, but these experiments have not been extended
to metals with pronounced strain hardening,

The mathematical techniques associated with plasticity and slip—line theory must also be
mentioned as precluding their general acceptance as a practical solution to extrusion problems,
At present the slip—line theory is applicable only to conditions of plane strain; for axial symmetrical
extrusion, the velocity and stress equations are not uniquely soluble, and the partial solutions
vhich have been achieved involve z briori assumptions and iterative techniques based on estab—
lished physical behaviour (Hill 1950),

2.3 Effects of Friction

The total work (and hence pressure) involved in extrusion is the sum of the work required
to deform the metal and the work required to overcome frictional forces between the billet and tooling,
These frictional forces exist between the billet and container in direct extrusion (but not in inverted
extrusion) and between the billet and die for slip over the die face, as with conical dies.

The empirical relationships between extrusion pressure and reduction in area, presented in
Section 2.1 do not include any allowance for these frictional forces; slip~—line solutions include
the frictional forces within the plastic zone but forces outside the plastic zone must be estimated
independently.

The frictional forces between thebillet and container in direct extrusion may be determined
(Stone 1953, Treco 1962) as shown in Figure 4a. For equilibrium of axial forces within the element dx:

(o) (wD dx) = A doy
or doy = fiﬁﬁ‘i o; dx

which on integration between O and 'L becomes:

ot = orgexp L (1.31)



For rotational equilibriuin:

Orp, ¢ Oxp— Y
and g = O’xé— Y ,
from which
oy = (O'xo—Y) exp -4%& + Y .
Substituting Ox; = actual extrusion pressure with friction = Py , and
Oxq extrusion pressure without friction = Py
Thus:
Pp = (Pg—Y)exp 4SL v Y
If now Pg = Y(a+hb log .R)
then P, = Y [((a +b logR — 1) exp ig_L)Jf 1:| . (1.32)

The solution to Equation 1,32 for a 4—inch diameter container is shown in Figure 5;
a value of Pg = Y (0.8 +1.5 log R} is assumed although the ratio PL /PO is relatively

insensitive to the value of Pg or teduction ratio as shown, Figure 5 shows that the effects of

container friction are most important; if a typical value of 4 = 0,04 is assumed for lubricated
extrusion, the frictional forces on a 10—inch longbillet will be such as to increase the starting

load, and hence the press capac1ty required, by about 40 per cent. over that for frictionless
extrusion,

Similar equations have been developed (Pearson and Parkins 1960, Treco 1962) for the
frictional forces on the die face for lubricated slip (Figure 4b). Thus the equilibrium condition
for axial forces is:

. 2 ) -
D doy + 20g dD + 2P dD (1 w2 a0, (1.33)
from which:
a e ol
_ tan tan o tan O
oxp = oxo (14 (R B0 vy (R
With no opposing stresses at the die opening ozs =0, and substituting oxpg = extrusion pressure
with die friction = Pp and Oxqg = extiusion preésure without die friction = Pq , then:
a Fand
_&_Gn"
Pp =p0(1+—---‘2“2 )[(Ra )-1:| . (1.34)

The solution to Equation 1.33 given above is strictly only valid for low values of die semi-
angle 0 as experienced in wire drawing; substitution of typical values of R = 10, & = 70°, and
M = 0.04 in Equation 1.34 gives a ratio PD/PO of 2.3 which is a major over—estimate of the
actual conditions, as noted previously (Peatson and Parkins 1960),

A more realistic but approximate solution may be obtained by considering the force balance
on the diein non—integrated form. Thus, using the notation in Figure 4b, the additional pressure
required to overcome die friction is:
ta Py pr-d¥) 1
cos O (D*) sin ¢

- IU‘QPO -(1 ...1_.)
= L - R
sin O cos O -

AP

(1.35)
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Substituting & =70° R = 10, @, = 0,04 in this expression gives:
AP = 0,112P, ,
that is, an increase in pressure of about 11 per cent,

Combining Equations 1,32 and 1,35, the estimated extrusion pressure with friction on the
container and die face is therefore:

PL = ?l:l +(a +b log,gR -1 exp(éDhI:) + ( ”zi(naél::;:%eR) (1 - _l]i-)) :’ (1.36)
The major problem in estimating the loss due to container or die friction is to establish
a true value for the coefficient of friction. For example values in the literature for the hot
extrusion of copper with graphite lubricant range from 0,009 (Treco 1962) to 0,20 (Zholobov 1937);
and controlled experiments (Bisson et al. 1957) have shown that the friction coefficient is dependent
on such factors as the temperature, surface speed, atmosphere, and surface films which may be
present. The coefficient tends to decrease with increasing temperature, loading, and surface speeds,
The coefficient thus assumed or derived from experimental results in extrusion is therefore a mean
value for a range of conditions,

3. CONCLUSIONS

Limitations exist in the analysis of extrusion problems using the established models. The
semi~empirical analytical techniques, and the meodel of homogeneous straining are an excessive
simplification of conditions; the corrections required to account for non~homogeneous straining
are large {commonly about 50 per cent, increase in pressure) and moteover, no techniques exist
to relate these corrections to conditions of tooling lubrication, geometry, of material,’

The more formal slip—line model predicts the extrusion conditions in plane strain with some
confidence, at least for materials without pronocunced strain~hardening tendencies or where the stress—
strain curve of the metal is well established at the conditions of extrusion. The analysis is not
applicable to axial symmetric extrusion, which is the most common practical problem,

In both cases, further progress with the existing models depends on development of techniques
to measure the basic extrusion parameters such as effective yield stress and friction coe fficient,
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FIGURE 3. HILL'S SLIP LINE FIELD FOR 50 per cent
REDUCTION IN PLANE STRAIN
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(a} Container friction

{b) Die friction

FIGURE 4. STRESS DIAGRAMS FOR CALCULATION
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